A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Validity of autism diagnoses using administrative health data. | LitMetric

Validity of autism diagnoses using administrative health data.

Chronic Dis Can

Perinatal Epidemiology Research Unit, Departments of Obstetrics and Gynaecology and Pediatrics, Dalhousie University, NS, Canada.

Published: November 2009

It is necessary to monitor autism prevalence in order to plan education support and health services for affected children. This study was conducted to assess the accuracy of administrative health databases for autism diagnoses. Three administrative health databases from the province of Nova Scotia were used to identify diagnoses of autism spectrum disorders (ASD): the Hospital Discharge Abstract Database, the Medical Services Insurance Physician Billings Database and the Mental Health Outpatient Information System database. Seven algorithms were derived from combinations of requirements for single or multiple ASD claims from one or more of the three administrative databases. Diagnoses made by the Autism Team of the IWK Health Centre, using state-of-the-art autism diagnostic schedules, were compared with each algorithm, and the sensitivity, specificity and C-statistic (i.e. a measure of the discrimination ability of the model) were calculated. The algorithm with the best test characteristics was based on one ASD code in any of the three databases (sensitivity=69.3%). Sensitivity based on an ASD code in either the hospital or the physician billing databases was 62.5%. Administrative health databases are potentially a cost efficient source for conducting autism surveillance, especially when compared to methods involving the collection of new data. However, additional data sources are needed to improve the sensitivity and accuracy of identifying autism in Canada.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3212104PMC

Publication Analysis

Top Keywords

administrative health
16
health databases
12
autism diagnoses
8
three administrative
8
diagnoses autism
8
based asd
8
asd code
8
health
7
autism
7
databases
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!