Background: One controversial issue in the larger cap-and-trade debate is the proper use and certification of carbon offsets related to changes in land management. Advocates of an expanded offset supply claim that inclusion of such activities would expand the scope of the program and lower overall compliance costs, while opponents claim that it would weaken the environmental integrity of the program by crediting activities that yield either nonexistent or merely temporary carbon sequestration benefits. Our study starts from the premise that offsets are neither perfect mitigation instruments nor useless "hot air."
Results: We show that offsets provide a useful cost containment function, even when there is some threat of reversal, by injecting additional "when-flexibility" into the system. This allows market participants to shift their reduction requirements to periods of lower cost, thereby facilitating attainment of the least-cost time path without jeopardizing the cumulative environmental integrity of the system. By accounting for market conditions in conjunction with reversal risk, we develop a simple offset valuation methodology, taking into account the two most important factors that typically lead offsets to be overvalued or undervalued.
Conclusion: The result of this paper is a quantitative "model rule" that could be included in future legislation or used as a basis for active management by a future "carbon fed" or other regulatory authority with jurisdiction over the US carbon market to actively manage allowance prices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706241 | PMC |
http://dx.doi.org/10.1186/1750-0680-4-3 | DOI Listing |
Sci Total Environ
January 2025
CATIE, Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba 30501, Costa Rica.
Agricultural systems are both emitters of greenhouse gases and have the potential to sequester carbon, especially agroforestry systems. Coffee agroforestry systems offer a wide range of intensities of use of agricultural inputs and densities and management of shade trees. We assessed the agronomic carbon footprint (up to farm gate) and modelled the carbon sequestration of a range of coffee agroforestry systems across 180 farms in Costa Rica and Guatemala.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
Alite calcium sulfoaluminate (ACSA) cement is an innovative and environmentally friendly cement compared to ordinary Portland cement (OPC). The synthesis and hydration of ACSA clinkers doped with gradient sulfur were investigated. The clinker compositions and hydrated pastes were characterized by X-ray diffraction (XRD), isothermal calorimetry, mercury intrusion porosimetry (MIP), and scanning electron microscopy (SEM) to analyze its mineral contents, hydration products, heat release, pore structure, and microstructure.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
College of Science, Inner Mongolia University of Technology, Hohhot, 015000, China.
Climate change, driven by carbon emissions, has emerged as a pressing global ecological and environmental challenge. Here, we leverage the panel data of five provinces and above prefecture-level cities in the middle and lower reaches of the Yellow River Basin to estimate the agricultural carbon emissions (CEs), carbon sinks (CSs), carbon compensation rate (CCR), and carbon compensation potential (CCP) from 2001 to 2022 and investigate the spatiotemporal evolution characteristics for this region. We propose an improved GLM-stacking ensemble learning method for CE prediction with limited sample data.
View Article and Find Full Text PDFSci Rep
December 2024
College of Aerospace Engineering, Shenyang Aerospace University, Shenyang, 110136, China.
This paper had conducted tensile shear tests on single-lap joints (SLJs)bonded structures of carbon fiber reinforced resin matrix (CFRP) composite laminates with different overlap lengths, overlap widths, overlap model, adherend material, and adhesive layer thicknesses under two environments: room temperature dry state (RTD) and elevated temperature wet state (ETW). The failure modes were observed, and load-displacement curves were obtained. The microscopic morphology of the fracture surface was observed by scanning electron microscope (SEM).
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
Bisphenol A (BPA, 4,4'-(propane-2,2-diyl)diphenol) is a common plasticizer that is very widespread in the environment and is also found at significant concentrations in the global oceans, due to contamination by plastics. Here we show that triplet sensitization is an important degradation pathway for BPA in natural surface waters, which could prevail if the water dissolved organic carbon is above 2-3 mg L. Bromide levels as per seawater conditions have the potential to slow down BPA photodegradation, a phenomenon that could not be offset by reaction of BPA with Br (second-order reaction rate constant of (2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!