Toxin-producing cyanobacteria in lakes and reservoirs form a threat to humans as well as various forms of aquatic life. This study is an investigation into the occurrence and distribution of Microcystins (MCYST) in 13 Greek Lakes. The distribution of MCYST in water and surface scum and toxin bioaccumulations in the omnivorous fish species Carassius gibelio were surveyed in all lakes. Considerable amounts of MCYST were found in water and scum of all lakes, irrespective of the trophic state, the type of the lake, and the reported dominant cyanobacterial species. Toxin accumulation in six tissues (liver, brain, intestine, kidney, ovary, and muscle) of C. gibelio was also analyzed. Even though the target organ for MCYST is the liver, in our study, MCYST were found also in the rest of C. gibelio tissues in the following order: liver > intestine > kidney > brain > ovaries > muscle. Risk assessments were carried out, taking into account the WHO guidelines and the tolerable daily intake (TDI) for MCYST. Our findings suggest that the amounts of MCYST found in water of Lakes Kastoria, Koronia, Pamvotis, Doirani, Mikri Prespa, Petron, and Zazari, pose adverse health risks. Also, it is likely to be unsafe to consume C. gibelio in Lakes Koronia, Kastoria, Pamvotis, and Mikri Prespa due to the high concentrations of accumulated MCYST.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.20513DOI Listing

Publication Analysis

Top Keywords

mcyst water
12
greek lakes
8
mcyst
8
amounts mcyst
8
intestine kidney
8
mikri prespa
8
lakes
7
accumulation microcystins
4
water
4
microcystins water
4

Similar Publications

Nitrogen limitation significantly reduces the competitive advantage of toxic Microcystis at high light conditions.

Chemosphere

December 2019

Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China. Electronic address:

Microcystis is a notorious cyanobacterial genus due to its rapid growth rate, huge biomass, and producing toxins in some eutrophic freshwater environments. To reveal the regulatory factors of interspecific competition between toxic and non-toxic Microcystis, three dominant Microcystis strains were selected, and their photosynthesis, population dynamics and microcystins (MCYST) production were measured. The results suggested that nitrogen-limitation (N-limitation) had a greater restriction for the growth of toxic Microcystis than that of non-toxic Microcystis, especially when cultured at high light or high temperature based on the weight analysis of key factors.

View Article and Find Full Text PDF

A study which probed the occurrence and quantitative variations hepatotoxic microcystin in a Sub Saharan drinking freshwater reservoir was carried out between November 2014 and March 2015. Results reveal the presence of MCYST-YR, MCYST-LR, MCYST-RR, MCYST-LA and MCYST-LF variants either in cells collected directly from bloom or toxic isolates cultured under laboratory conditions. Two minor microcystin congeners (MCYST-(H)YR) and (D-Asp, Dha) MCYST-RR) were identified, but not quantified.

View Article and Find Full Text PDF

Unlabelled: The hepatotoxin microcystin (MCYST) is produced by a variety of freshwater cyanobacterial species, including Microcystis aeruginosa Interestingly, MCYST-producing M. aeruginosa strains have been shown to outcompete their nontoxic counterparts under iron-limiting conditions. However, the reasons for this are unclear.

View Article and Find Full Text PDF

Cyanobacteria constitute the main toxin producers in inland water ecosystems and have extensive global distribution. The presence of hepatotoxins in aquatic environments is hazardous to human and animal health; even though the presence and identification of hepatotoxic microcystins in rivers and reservoirs of the world have been confirmed by several studies in the last few years. Herein, we studied the abundance and toxicity of Microcystis aeruginosa in the Argentine section of the Paraná River at the beginning of the Middle Paraná (Corrientes Hydrometer), near Corrientes city (27º28´ S - 58º51´ W) and approximately 220 km downstream of the Yacyretá dam (High Paraná).

View Article and Find Full Text PDF

Lyngbya wollei is a benthic filamentous cyanobacterium that produces a toxin analogous to the neurotoxic saxitoxin known as lyngbyatoxin (LYNGTX). Microcystis aeruginosa form blooms in the pelagic area of eutrophic lakes and produce a series of potent hepatotoxins-microcystins (MCYST). The aim of this study in vitro study was to examine the difference between the crude extracts of either M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!