Occurrence and temporal variations of TMDD in the river Rhine, Germany.

Environ Sci Pollut Res Int

Institute of Atmospheric and Environmental Sciences, Department of Analytical Environmental Chemistry, J.W. Goethe University Frankfurt am Main, Altenhöferallee 1, 60438, Frankfurt am Main, Germany.

Published: February 2010

Background, Aim, And Scope: The chemical substance 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) is a non-ionic surfactant used as an industrial defoaming agent and in various other applications. Its commercial name is Surynol 104 and the related ethoxylates are also available as Surfynol 420, 440, 465 and 485 which are characterized by different grades of ethoxylation of TMDD at both hydroxyl functional groups. TMDD and its ethoxylates offer several advantages in waterborne industrial applications in coatings, inks, adhesives as well as in paper industries. TMDD and its ethoxylates can be expected to reach the aquatic environment due its widespread use and its physico-chemical properties. TMDD has previously been detected in several rivers of Germany with concentrations up to 2.5 microg/L. In the United States, TMDD was also detected in drinking water. However, detailed studies about its presence and distribution in the aquatic environment have not been carried out so far. The aim of the present study was the analysis of the spatial and temporal concentration variations of TMDD in the river Rhine at the Rheingütestation Worms (443.3 km). Moreover, the transported load in the Rhine was investigated during two entire days and 7 weeks between November 2007 and January 2008.

Materials And Methods: The sampling was carried out at three different sampling points across the river. Sampling point MWL1 is located in the left part of the river, MWL2 in the middle part, and MWL4 in the right part. One more sampling site (MWL3) was run by the monitoring station until the end of 2006, but was put out of service due to financial constrains. The water at the left side of the river Rhine (MWL1) is influenced by sewage from a big chemical plant in Ludwigshafen and by the sewage water from this city. The water at the right side of the river Rhine (MWL4) is largely composed of the water inflow from river Neckar, discharging into Rhine 14.9 km upstream from the sampling point and of communal and industrial wastewater from the city Mannheim. The water from the middle of the river (MWL2) is largely composed of water from the upper Rhine. Water samples were collected in 1-L bottles by an automatic sampler. The water samples were concentrated by use of solid-phase extraction (SPE) using Bond Elut PPL cartridges and quantified by use of gas chromatography-mass spectrometry (GC-MS). The quantification was carried out with the internal standard method. Based on these results, concentration variations were determined for the day profiles and week profiles. The total number of analyzed samples was 219.

Results: The results of this study provide information on the temporal concentration variability of TMDD in river Rhine in a cross section at one particular sampling point (443.3 km). TMDD was detected in all analyzed water samples at high concentrations. The mean concentrations during the 2 days were 314 ng/L in MWL1, 246 ng/L in MWL2, and 286 ng/L in MWL4. The variation of concentrations was low in the day profiles. In the week profiles, a trend of increasing TMDD concentrations was detected particularly in January 2008, when TMDD concentrations reached values up to 1,330 ng/L in MWL1. The mean TMDD concentrations during the week profiles were 540 ng/L in MWL1, 484 ng/L in MWL2, and 576 ng/L in MWL4. The loads of TMDD were also determined and revealed to be comparable in all three sections of the river. The chemical plant located at the left side of the Rhine is not contributing additional TMDD to the river. The load of TMDD has been determined to be 62.8 kg/d on average during the entire period. By extrapolation of data obtained from seven week profiles the annual load was calculated to 23 t/a.

Discussion: The permanent high TMDD concentrations during the investigation period indicate an almost constant discharge of TMDD into the river. This observation argues for effluents of municipal wastewater treatment plants as the most likely source of TMDD in the river. Another possible source might be the degradation of ethoxylates of TMDD (Surfynol series 400), in the WWTPs under formation of TMDD followed by discharge into the river. TMDD has to be considered as a high-production-volume (HPV) chemical based on the high concentrations found in this study. In the United States, TMDD is already in the list of HPV chemicals from the Environmental Protection Agency (EPA). However, the amount of TMDD production in Europe is unknown so far and also the biodegradation rates of TMDD in WWTPs have not been investigated.

Conclusions: TMDD was found in high concentrations during the entire sampling period in the Rhine river at the three sampling points. During the sampling period, TMDD concentrations remained constant in each part of the river. These results show that TMDD is uniformly distributed in the water collected at three sampling points located across the river. 'Waves' of exceptionally high concentrations of TMDD could not be detected during the sampling period. These results indicate that the effluents of WWTPs have to be considered as the most important sources of TMDD in river Rhine.

Recommendations And Perspectives: Based also on the occurrence of TMDD in different surface waters of Germany with concentrations up to 2,500 ng/L and its presence in drinking water in the USA, more detailed investigations regarding its sources and distribution in the aquatic environment are required. Moreover, the knowledge with respect to its ecotoxicity and its biodegradation pathway is scarce and has to be gained in more detail. Further research is necessary to investigate the rate of elimination of TMDD in municipal and industrial wastewater treatment plants in order to clarify the degradation rate of TMDD and to determine to which extent effluents of WWTPs contribute to the input of TMDD into surface waters. Supplementary studies are needed to clarify whether the ethoxylates of TMDD (known as Surfynol 400 series) are hydrolyzed in the aquatic environment resulting in formation of TMDD similar to the well known cleavage of nonylphenol ethoxylates into nonylphenols. The stability of TMDD under anaerobic conditions in groundwater is also unknown and should be studied.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2809978PMC
http://dx.doi.org/10.1007/s11356-009-0191-8DOI Listing

Publication Analysis

Top Keywords

tmdd
37
tmdd river
28
river rhine
20
tmdd concentrations
20
river
18
aquatic environment
16
tmdd detected
16
week profiles
16
high concentrations
16
concentrations
13

Similar Publications

Iptacopan, a first-in-class complement factor B inhibitor acting proximally in the alternative complement pathway, has been shown to be safe and effective for patients with complement-mediated diseases. Iptacopan selectively binds with high affinity to factor B, a soluble, plasma-based, hepatically produced protein. Factor B is abundant in the circulation but can be saturated at the iptacopan clinical dose of 200 mg twice daily.

View Article and Find Full Text PDF

Bispecific antibodies represent a promising class of biologics for cancer treatment. However, their dual specificity and complex structure pose challenges in the engineering process, often resulting in molecules with good functional but poor physicochemical properties. To overcome limitations in the properties of an anti-5T4 x anti-CD3 (α5T4 x αCD3) DART molecule, a phage-display method was developed, which succeeded in simultaneously engineering cross-reactivity to the cynomolgus 5T4 ortholog, improving thermostability and the elevating expression level.

View Article and Find Full Text PDF

Low-dimensional neural ordinary differential equations accounting for inter-individual variability implemented in Monolix and NONMEM.

CPT Pharmacometrics Syst Pharmacol

January 2025

Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.

Article Synopsis
  • * The implementation of low-dimensional NODEs in popular PMX software, Monolix and NONMEM, is detailed, highlighting inter-individual variability and practical applications.
  • * Demonstrational datasets in Monolix show that NODEs can produce results comparable to traditional modeling techniques, with accessible model codes provided for reproducibility.
View Article and Find Full Text PDF

Drug-target binding determines a drug's pharmacodynamics but can also have a profound impact on a drug's pharmacokinetics, known as target-mediated drug disposition (TMDD). TMDD models describe the influence of drug-target binding and target turnover on unbound drug concentrations and are frequently used for biologics and drugs with nonlinear plasma pharmacokinetics. For drug targets expressed in tissues, the effect of TMDD may not be detected when analyzing plasma concentration curves, but it might still affect tissue concentrations and occupancy.

View Article and Find Full Text PDF
Article Synopsis
  • - RLYB212 is a human monoclonal antibody in clinical trials aimed at preventing maternal alloimmunization to fetal platelet antigen HPA-1a, which can cause fetal and neonatal alloimmune thrombocytopenia (FNAIT).
  • - A target-mediated drug disposition (TMDD) model was developed to analyze how RLYB212 interacts with both the drug's pharmacokinetics (PK) and the dynamics of HPA-1a-positive platelets in HPA-1b/b volunteers.
  • - Simulations using the TMDD model identified a dosing regimen of 0.06 mg RLYB212 with a loading dose of 0.12 mg as optimal, ensuring drug levels remain below
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!