Interleukin-15 enhances natural killer cell cytotoxicity in patients with acute myeloid leukemia by upregulating the activating NK cell receptors.

Cancer Immunol Immunother

Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5150 Centre Avenue, Pittsburgh, PA 15232, USA.

Published: January 2010

Interleukin-15 (IL-15) has a major role in NK-cell homeostasis. Modulation of the relative frequency and expression intensity of the NK-cell receptors by IL-15 may increase NK cell-mediated cytotoxicity in cancer patients. We investigated the receptor repertoire and measured NK-cell activity in newly diagnosed AML patients and evaluated the ex vivo effects of IL-15. The expression of the activating NK cell receptors was significantly decreased in the AML patients compared to that in NK cells of healthy donors. When NK cells obtained from AML patients were cultured with IL-15, expression of the activating receptors was significantly upregulated compared to pre-culture levels. Concomitantly, cytotoxic activity of NK cells against autologous leukemic blasts increased following IL-15 stimulation. This IL-15 induced increase in activity was blocked by neutralizing antibodies specific for the NK cell activating receptors. These pre-clinical data support the future use of IL-15 for NK cell- based therapies for AML patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721322PMC
http://dx.doi.org/10.1007/s00262-009-0724-5DOI Listing

Publication Analysis

Top Keywords

aml patients
16
activating cell
8
cell receptors
8
il-15 expression
8
expression activating
8
activating receptors
8
il-15
7
patients
6
receptors
5
interleukin-15 enhances
4

Similar Publications

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

Venetoclax plus azacitidine represents a key advance for older, unfit patients with acute myeloid leukemia (AML). The chemotherapy and venetoclax in elderly AML trial (CAVEAT) was first to combine venetoclax with intensive chemotherapy in newly diagnosed patients ≥65 years. In this final analysis, 85 patients (median age 71 years) were followed for a median of 41.

View Article and Find Full Text PDF

Background: Hypomethylating agents (HMA), such as azacytidine (AZA) and decitabine (DAC), are epigenetic therapies used to treat some patients with acute myeloid leukaemia (AML) and myelodysplastic syndrome. HMAs act in a replication-dependent manner to remove DNA methylation from the genome. However, AML cells targeted by HMA therapy are often quiescent within the bone marrow, where oxygen levels are low.

View Article and Find Full Text PDF

Exploring treatment-driven subclonal evolution of prognostic triple biomarkers: Dual gene fusions and chimeric RNA variants in novel subtypes of acute myeloid leukemia patients with KMT2A rearrangement.

Drug Resist Updat

January 2025

Loma Linda University Cancer Center, Loma Linda, CA 92354, United States; Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, United States. Electronic address:

Chromosomal rearrangements (CR) initiate leukemogenesis in approximately 50 % of acute myeloid leukemia (AML) patients; however, limited targeted therapies exist due to a lack of accurate molecular and genetic biomarkers of refractory mechanisms during treatment. Here, we investigated the pathological landscape of treatment resistance and relapse in 16 CR-AML patients by monitoring cytogenetic, RNAseq, and genome-wide changes among newly diagnosed, refractory, and relapsed AML. First, in FISH-diagnosed KMT2A (MLL gene, 11q23)/AFDN (AF6, 6q27)-rearrangement, RNA-sequencing identified an unknown CCDC32 (15q15.

View Article and Find Full Text PDF

Motion-Compensated Multishot Pancreatic Diffusion-Weighted Imaging With Deep Learning-Based Denoising.

Invest Radiol

January 2025

From the Department of Radiology, Stanford University, Stanford, CA (K.W., M.J.M., A.M.L., A.B.S., A.J.H., D.B.E., R.L.B.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA (K.W.); GE HealthCare, Houston, TX (X.W.); GE HealthCare, Boston, MA (A.G.); and GE HealthCare, Menlo Park, CA (P.L.).

Objectives: Pancreatic diffusion-weighted imaging (DWI) has numerous clinical applications, but conventional single-shot methods suffer from off resonance-induced artifacts like distortion and blurring while cardiovascular motion-induced phase inconsistency leads to quantitative errors and signal loss, limiting its utility. Multishot DWI (msDWI) offers reduced image distortion and blurring relative to single-shot methods but increases sensitivity to motion artifacts. Motion-compensated diffusion-encoding gradients (MCGs) reduce motion artifacts and could improve motion robustness of msDWI but come with the cost of extended echo time, further reducing signal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!