The nuclear pore complex (NPC) is a macromolecular assembly embedded within the nuclear envelope that mediates bidirectional exchange of material between the nucleus and cytoplasm. Our recent work on the yeast NPC has revealed a simple modularity in its architecture and suggested a common evolutionary origin of the NPC and vesicle coating complexes in a progenitor protocoatomer. However, detailed compositional and structural information is currently only available for vertebrate and yeast NPCs, which are evolutionarily closely related. Hence our understanding of NPC composition in a full evolutionary context is sparse. Moreover despite the ubiquitous nature of the NPC, sequence searches in distant taxa have identified surprisingly few NPC components, suggesting that much of the NPC may not be conserved. Thus, to gain a broad perspective on the origins and evolution of the NPC, we performed proteomics analyses of NPC-containing fractions from a divergent eukaryote (Trypanosoma brucei) and obtained a comprehensive inventory of its nucleoporins. Strikingly trypanosome nucleoporins clearly share with metazoa and yeast their fold type, domain organization, composition, and modularity. Overall these data provide conclusive evidence that the majority of NPC architecture is indeed conserved throughout the Eukaryota and was already established in the last common eukaryotic ancestor. These findings strongly support the hypothesis that NPCs share a common ancestry with vesicle coating complexes and that both were established very early in eukaryotic evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2742445 | PMC |
http://dx.doi.org/10.1074/mcp.M900038-MCP200 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
Most gene therapies exert their actions via manipulation of hepatocytes (parenchymal cells) and the reasons behind the suboptimal performance of synthetic mRNA in non-parenchymal cells (NPC) such as Kupffer cells (KC), and liver macrophages, remain unclear. Here, the spatio-temporal distribution of mRNA encoding enhanced green fluorescent protein (Egfp), siRNA, or both co-encapsulated into lipid nanoparticles (LNP) in the liver in vivo using real-time intravital imaging is investigated. Although both KC and hepatocytes demonstrate comparable high and rapid uptake of mRNA-LNP and siRNA-LNP in vivo, the translation of Egfp mRNA occurs exclusively in hepatocytes during intravital imaging.
View Article and Find Full Text PDFDevelopment
January 2025
Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
Emerging evidence suggests that the nuclear pore complex can have unique compositions and distinct nucleoporin functions in different cells. Here, we show that Nup107, a key component of the NPC scaffold, varies in expression over development: it is expressed at higher levels in the blastula compared to the gastrula suggesting a critical role prior to gastrulation. We find depletion of Nup107 affects the differentiation of the early germ layers leading to an expansion of the ectoderm at the expense of endoderm and mesoderm.
View Article and Find Full Text PDFHeliyon
January 2025
Faculty of Medicine, University of Surabaya, Surabaya, 60292, Indonesia.
Nasopharyngeal cancer (NPC), although rare in young individuals worldwide, is significantly influenced by the Epstein-Barr virus (EBV). Considering EBV's widespread prevalence, understanding its role in NPC's future occurrence, disease progression, clinical symptoms, metastatic tendencies, and prognosis is crucial. In this study, we extensively analyzed two young patients with NPC, who displayed distinct clinical features.
View Article and Find Full Text PDFJ Pediatr Endocrinol Metab
January 2025
Department of Pediatric Metabolism and Ankara University Rare Diseases Application and Research Center, Ankara University Faculty of Medicine, Ankara, Türkiye.
Objectives: Niemann-Pick type C (NPC) is a rare, autosomal recessive, neurodegenerative disorder caused by biallelic pathogenic variants in the or genes, leading to lysosomal lipid accumulation. NPC has an incidence of 1 in 100,000 live births and presents with a wide range of symptoms affecting visceral organs and the central nervous system. We aim to describe the diverse clinical presentations of NPC through case studies.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
Nasopharyngeal carcinoma (NPC) is a prevalent malignancy in China, commonly associated with undifferentiated cell types and Epstein-Barr virus (EBV) infection. The presence of intense lymphocytic infiltration and elevated expression of programmed cell death ligand 1(PD-L1) in NPC highlights its potential for immunotherapy, yet current treatment outcomes remain suboptimal. In this review, we explore the tumor microenvironment of NPC to better understand the mechanisms of resistance to immunotherapy, evaluate current therapeutic strategies, and pinpoint emerging targets, such as tertiary lymphoid structures (TLSs), that could enhance treatment outcomes and prognostic accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!