Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Leukocyte function can be modulated through the cannabinoid receptor 2 (CB2R). Using a cecal ligation and puncture (CLP) model of sepsis, we examined the role of the CB2R during the immune response to an overwhelming infection. CB2R-knock out (KO) mice showed decreased survival as compared with wild-type mice. CB2R-KO mice also had increased serum IL-6 and bacteremia. Twenty-four hours after CLP, the CB2R-deficient mice had increased lung injury. Additionally, CB2R-deficiency led to increased neutrophil recruitment, decreased neutrophil activation, and decreased p38 activity at the site of infection. Consistent with a novel role for CB2R in sepsis, CB2R-agonist treatment in wild-type mice increased the mean survival time in response to CLP. Treatment with CB2R-agonist also decreased serum IL-6 levels, bacteremia, and damage to the lungs compared with vehicle-treated mice. Finally, the CB2R agonist decreased neutrophil recruitment, while increasing neutrophil activation and p38 activity at the site of infection compared with vehicle-treated mice. These data suggest that CB2R is a critical regulator of the immune response to sepsis and may be a novel therapeutic target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763235 | PMC |
http://dx.doi.org/10.4049/jimmunol.0900203 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!