Coupling extraction-flotation with surfactant and electrochemical degradation for the treatment of PAH contaminated hazardous wastes.

J Hazard Mater

Institut National de la Recherche Scientifique (INRS-Eau Terre et Environnement), Université du Québec, 490 Rue de la Couronne, Québec, QC G1K9A9, Canada.

Published: October 2009

The performance of a two-stage process combining extraction of polycyclic aromatic hydrocarbons (PAHs) with an amphoteric surfactant (CAS) followed by electro-oxidation of PAH-foam concentrate was studied for the decontamination of aluminum industry wastes (AIW) and polluted soils. The PAH suspensions extracted from AIW and soils were treated in a 2L-parallelepipedic electrolytic cell containing Ti/RuO2 anodes and stainless steel cathodes. Current densities varying from 4.6 to 18.5 mA cm(-2) have been tested with and without addition of a supporting electrolyte (6.25 to 50 kg Na2SO4 t(-1) of dry waste). The best performance for PAH degradation was obtained while the electrolytic cell was operated during 90 min at a current density of 9.2 mA cm(-2), with a total solids concentration of 2.0%, and in presence 12.5 kg Na(2)SO(4)t(-1). The application of the process on AIW (initial PAH content: 3424 mg kg(-1)) allowed extracting 42% of PAH, whereas 50% of PAH was electrochemically degraded in the resulting foam suspensions. By comparison, 44% to 60% of PAH was extracted from polluted soils (initial PAH content: 1758 to 4160 mg kg(-1)) and 21% to 55% of PAH was oxidized in the foam suspensions. The electrochemical treatment cost (including only electrolyte and energy consumption) recorded in the best experimental conditions varied from 99 to 188 USD $ t(-1) of soils or AIW treated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2009.05.104DOI Listing

Publication Analysis

Top Keywords

pah
9
polluted soils
8
electrolytic cell
8
initial pah
8
pah content
8
foam suspensions
8
coupling extraction-flotation
4
extraction-flotation surfactant
4
surfactant electrochemical
4
electrochemical degradation
4

Similar Publications

This review delves into the impact of benzo(a)pyrene (B(a)P), which is a toxic and pervasive polycyclic aromatic hydrocarbon (PAH) and known carcinogen, on the human health risk from a gut microbiome perspective. We retrieved the relevant articles on each PAH and summarized the reporting to date, with a particular focus on benzo(a)pyrene, which has been reported to have a high risk of gut microbiome-related harm. B(a)P exposure can compromise the homeostasis of the gut microbiota, leading to dysbiosis, a state of microbial imbalance.

View Article and Find Full Text PDF

Soils in the Black Soil Zone of northeast China are experiencing pollution from polycyclic aromatic hydrocarbons (PAHs) as the region undergoes urbanization. In this study, 119 topsoil samples were collected from the black soil agricultural area in Jilin Province, China to investigate the characteristics and spatial distribution of 16 PAHs. The total concentration of ∑16 PAHs in the agricultural soils ranged from 2.

View Article and Find Full Text PDF

Hydroxylated-Benz[a]anthracenes Induce Two Apoptosis-Related Gene Expressions in the Liver of the Nibbler Fish .

Toxics

December 2024

Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan.

Polycyclic aromatic hydrocarbons (PAHs) are known to have toxic effects on fish. In this study, we examined the effects of benz[a]anthracene (BaA), a type of PAH, on fish liver metabolism. Nibbler fish () were intraperitoneally injected with BaA (10 ng/g body weight) four times over a 10-day period.

View Article and Find Full Text PDF

The World Health Organization has classified air pollution as a carcinogen, and polycyclic aromatic hydrocarbons (PAHs) are major components of air particulates of carcinogenic concern. Thus far, most studies focused on genotoxic high molecular weight PAHs; however, recent studies indicate potential carcinogenicity of the non-genotoxic lower molecular weight PAHs (LMW PAHs) that are found in indoor and outdoor air pollution as well as secondhand cigarette smoke. We hypothesize that LMW PAHs contribute to the promotion stage of cancer when combined with benzo[]pyrene (B[]P), a legacy PAH.

View Article and Find Full Text PDF

Advances in the Degradation of Polycyclic Aromatic Hydrocarbons by Yeasts: A Review.

Microorganisms

December 2024

Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510, Mexico.

Polycyclic aromatic hydrocarbons (PAHs) are toxic organic compounds produced during the incomplete combustion of organic materials and are commonly found in the environment due to anthropogenic activities such as industrial and vehicular emissions as well as natural sources, mainly volcanic eruptions and forest fires. PAHs are well known for their bioaccumulative capacity and environmental persistence, raising concerns due to their adverse effects on human health, including their carcinogenic potential. In recent years, bioremediation has emerged as a promising, effective, and sustainable solution for the degradation of PAHs in contaminated environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!