fezf2 expression delineates cells with proliferative potential and expressing markers of neural stem cells in the adult zebrafish brain.

Gene Expr Patterns

Programs in Developmental Biology, Neuroscience and Human Genetics, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158-2811, USA.

Published: September 2009

Fezf2 (also known as Fezl, ZNF312, or Zfp312) is an evolutionarily conserved forebrain-specific zinc finger transcription factor that is expressed during development and is implicated in patterning as well as neurogenesis in both zebrafish and mice. Despite these findings, the expression of fezf2 in the adult brain has not been well characterized, and fezf2 function in the adult brain remains unknown. The zebrafish has recently emerged as a new model system to study adult neurogenesis, given its similarity to mammalian systems and enhanced capability of undergoing adult neurogenesis. Through RNA in situ hybridization and using a fezf2 promoter-driven GFP transgenic line, we present data showing that fezf2 is expressed in radial glial progenitor cells of the telencephalic ventricular zone in the adult zebrafish brain, which co-express markers of neural stem cells and proliferation. Additionally, we identify the preoptic region and the hypothalamus as fezf2-expressing neurogenic regions in the adult zebrafish brain, where fezf2 labels progenitor cells as well as postmitotic neurons. Our findings establish Fezf2 as a novel marker for adult telencephalic ventricular progenitor cells that express markers of neural stem cells in zebrafish and lay a critical foundation for future investigation of Fezf2 function in the maintenance and differentiation of neural stem cells in the adult vertebrate brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2746713PMC
http://dx.doi.org/10.1016/j.gep.2009.06.002DOI Listing

Publication Analysis

Top Keywords

neural stem
16
stem cells
16
markers neural
12
adult zebrafish
12
zebrafish brain
12
progenitor cells
12
fezf2
9
adult
9
cells
8
cells adult
8

Similar Publications

Background/objectives: Glioblastoma multiforme (GBM) is the most common high-grade primary brain cancer in adults. Despite efforts to advance treatment, GBM remains treatment resistant and inevitably progresses after first-line therapy. Induced neural stem cell (iNSC) therapy is a promising, personalized cell therapy approach that has been explored to circumvent challenges associated with the current GBM treatment.

View Article and Find Full Text PDF

Functional and Structural Changes in the Inner Ear and Cochlear Hair Cell Loss Induced by Hypergravity.

Int J Mol Sci

January 2025

Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon 22332, Republic of Korea.

Gravitational changes have been shown to cause significant abnormalities in various body systems, including the cardiovascular, immune, vestibular, and musculoskeletal systems. While numerous studies have examined the response of the vestibular system to gravitational stimulation, research on functional changes in the peripheral inner ear remains limited. The inner ear comprises two closely related structures: the vestibule and cochlea.

View Article and Find Full Text PDF

The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.

View Article and Find Full Text PDF

Background/objectives: Strabismus is the most common ocular disorder of childhood. Three rare, recurrent genetic duplications have been associated with both esotropia and exotropia, but the mechanisms by which they contribute to strabismus are unknown. This work aims to investigate the mechanisms of the smallest of the three, a 23 kb duplication on chromosome 4 (hg38|4:25,554,985-25,578,843).

View Article and Find Full Text PDF

Neural progenitor cells (NPCs) are often used to study the subcellular mechanisms underlying differentiation into neurons in vitro. Works published to date have focused on the pathways that distinguish undifferentiated NPCs from mature neurons, neglecting the earlier and intermediate stages of this process. Current evidence suggests that mitochondria interaction with the ER is fundamental to a wide range of intracellular processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!