Non-Edg family lysophosphatidic acid (LPA) receptors.

Prostaglandins Other Lipid Mediat

Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.

Published: September 2009

Lysophosphatidic acid (LPA; 1- or 2-acyl-sn-glycero-3-phosphate) is a bioactive phospholipid with mitogenic and/or morphological effects on many cell types. In addition, LPA has been reported to play important roles in various biological processes. It was originally thought that the cellular effects of LPA are mediated by three subtypes of G-protein-coupled receptors: LPA(1)/Edg2, LPA(2)/Edg4, and LPA(3)/Edg7. They share 50-57% amino acid identities and, together with five sphingosine-1-phosphate receptors (S1P(1)/Edg1, S1P(2)/Edg5, S1P(3)/Edg3, S1P(4)/Edg6, and S1P(5)/Edg8), comprise the endothelial cell differentiation gene (Edg) family. However, even after finding of the Edg family LPA receptors, the existence of an additional LPA receptor(s) has been implied by several reports. In 2003, we identified p2y9/GPR23 as a fourth LPA receptor, LPA(4), which is structurally distant from the Edg family LPA receptors. LPA(4)/p2y9/GPR23 has stimulated identification of two additional LPA receptors, LPA(5)/GPR92/GPR93 and LPA(6)/p2y5. These findings made us aware of the existence of a novel "non-Edg" LPA receptor family. This review article focuses on the identification, properties and possible functions of the non-Edg family LPA receptors: LPA(4)/p2y9/GPR23, LPA(5)/GPR92/GPR93 and LPA(6)/p2y5.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prostaglandins.2009.06.001DOI Listing

Publication Analysis

Top Keywords

lpa receptors
24
edg family
12
family lpa
12
lpa
11
non-edg family
8
lysophosphatidic acid
8
acid lpa
8
receptors
8
additional lpa
8
lpa receptor
8

Similar Publications

The active metabolite of vitamin D3, calcitriol (1,25D), is widely recognised for its direct anti-proliferative and pro-differentiation effects. However, 1,25D is calcaemic, which restricts its clinical use for cancer treatment. Non-calcaemic agonists of the vitamin D receptor (VDR) could be better candidates for cancer treatment.

View Article and Find Full Text PDF

Coronary artery disease (CAD) is a multigenic condition influenced by both nature and nurture (60% to 40%). Prognosis of CAD is based on familial patterns. This study examined and analyzed the susceptibility of CAD to genetic variants in various Pakistani families.

View Article and Find Full Text PDF

Lipoprotein(a) and Atrial Fibrillation: Mechanistic Insights and Therapeutic Approaches.

Int J Med Sci

January 2025

Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People's Republic of China.

Elevated lipoprotein(a) [Lp(a)] levels are increasingly recognized as a significant risk factor for cardiovascular diseases and may also contribute to atrial fibrillation (AF). This review investigated the indirect mechanisms through which Lp(a) may influence AF, including proatherogenic, prothrombotic, and proinflammatory pathways. Traditional lipid-lowering therapies, such as lifestyle modifications and statins, have limited effects on Lp(a) levels.

View Article and Find Full Text PDF

Structural insights into the engagement of lysophosphatidic acid receptor 1 with different G proteins.

J Struct Biol

December 2024

Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima Bunkyo-ku 113-8510, Tokyo, Japan. Electronic address:

Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive lysophospholipids derived from cell membranes that activate the endothelial differentiation gene family of G protein-coupled receptors. Activation of these receptors triggers multiple downstream signaling cascades through G proteins such as Gi/o, Gq/11, and G12/13. Therefore, LPA and S1P mediate several physiological processes, including cytoskeletal dynamics, neurite retraction, cell migration, cell proliferation, and intracellular ion fluxes.

View Article and Find Full Text PDF

The role of lysophosphatidic acid and its receptors in corneal nerve regeneration.

Ocul Surf

December 2024

Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Germany. Electronic address:

The integrity of corneal nerves is critical for ocular surface health, and damages can lead to Neurotrophic Keratopathy (NK). Despite the regenerative abilities of the peripheral nerve system (PNS), corneal nerve regeneration is often incomplete, and the underlying mechanisms are poorly understood. This study aims to identify potential factors that can enhance corneal nerve regeneration for NK treatment, with a focus on Lysophosphatidic acid (LPA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!