Mitochondria consume nitric oxide (NO) mainly through reaction with superoxide anion (O(2)(-)). Here, we analyzed the O(2)(-) sources for NO degradation by isolated rat liver mitochondria. Electron leakage from complex III and reverse electron transport to complex I accounted for O(2)(-)-dependent NO degradation by mitochondria in the presence of a protonmotive force. Mitochondria incubated with NAD(P)H also presented intense O(2)(-) generation and NO degradation rates that were insensitive to respiratory inhibitors and abolished after proteinase treatment. These results suggest that an outer membrane-localized NAD(P)H oxidase activity, in addition to the electron leakage from the respiratory chain, promotes O(2)(-)-dependent NO degradation in rat liver mitochondria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2009.06.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!