Plant responses against invasive nucleic acids: RNA silencing and its suppression by plant viral pathogens.

Semin Cell Dev Biol

Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, United States.

Published: December 2009

RNA silencing is a common strategy shared by eukaryotic organisms to regulate gene expression, and also operates as a defense mechanism against invasive nucleic acids such as viral transcripts. The silencing pathway is quite sophisticated in higher eukaryotes but the distinct steps and nature of effector complexes vary between and even within species. To counteract this defense mechanism viruses have evolved the ability to encode proteins that suppress silencing to protect their genomes from degradation. This review focuses on our current understanding of how individual components of the plant RNA silencing mechanism are directed against viruses, and how in turn virus-encoded suppressors target one or more key events in the silencing cascade.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866513PMC
http://dx.doi.org/10.1016/j.semcdb.2009.06.001DOI Listing

Publication Analysis

Top Keywords

rna silencing
12
invasive nucleic
8
nucleic acids
8
defense mechanism
8
silencing
6
plant responses
4
responses invasive
4
acids rna
4
silencing suppression
4
suppression plant
4

Similar Publications

Troponin C is required for copulation and ovulation in Nilaparvata lugens.

Insect Biochem Mol Biol

January 2025

Institute of Insect Sciences, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China. Electronic address:

Troponin C (TnC) is a calcium-binding subunit of the troponin complex that regulates muscle contraction in animals. However, the physiological roles of TnC, especially in insect development and reproduction, remain largely unknown. We identified seven TnC genes encoding four EF-hand motif protein in the rice pest, the brown planthopper Nilaparvata lugens.

View Article and Find Full Text PDF

Deleted in malignant brain tumors 1 (DMBT1) gene relate to immune priming and phagocytosis modulation in the small abalone Haliotis diversicolor.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China. Electronic address:

The small abalone (Haliotis diversicolor) is an economic shellfish cultured in the south coast of China. In recent years, the frequent occurrence of the disease has led to significant mortality in abalone farms. Deleted in malignant brain tumors 1 (DMBT1), a member of the scavenger receptor cysteine-rich (SRCR) protein family, plays an important role in host defense.

View Article and Find Full Text PDF

Peptide nucleic acids (PNA), synthetic molecules comprising a peptide-like backbone and natural and unnatural nucleobases, have garnered significant attention for their potential applications in gene editing and other biomedical fields. The unique properties of PNA, particularly enhanced stability/specificity/affinity towards targeted DNA and RNA sequences, achieved significant attention recently for gene silencing, gene correction, antisense therapy, drug delivery, biosensing and other various diagnostic aspects. This review explores the structure, properties, and potential of PNA in transforming genetic engineering including potent biomedical challenges.

View Article and Find Full Text PDF

The cross-resistance to etofenprox in Nilaparvata lugens with a high adaptability to resistant rice variety IR56.

Pest Manag Sci

January 2025

Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China.

Background: The application of resistant rice varieties and insecticides represents two crucial strategies for managing the brown planthopper (BPH), Nilaparvata lugens (Stål). Insects often employ similar detoxification mechanisms to metabolize plant secondary metabolites and insecticides, which poses a potential risk that BPH population adapted to resistant rice may also obtain resistance to some insecticides.

Results: Here in a BPH population (R-IR56) that has adapted to the resistant rice variety IR56 through continuous selection, the moderate resistance to etofenprox was observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!