AI Article Synopsis

  • The study examined how two probiotic strains, Lactobacillus plantarum BFE 1685 and Lactobacillus rhamnosus GG, impact immune responses in HT29 intestinal cells when exposed to Salmonella enterica.
  • The presence of TNF-alpha elevated IL-8 production in HT29 cells, indicating that these cells could be sensitized by the lactobacilli, enhancing their response upon infection with Salmonella.
  • While lactobacilli did not stimulate TLR4 levels, they increased the expression of TLR2 and TLR9, with L. rhamnosus GG showing a stronger effect, demonstrating a specific interaction between probiotics and gut epithelial cells that could explain their immune-boost

Article Abstract

The potentially probiotic strain Lactobacillus plantarum BFE 1685 isolated from a child's faeces and the probiotic strain Lactobacillus rhamnosus GG were investigated for their capability to influence the innate immune response of HT29 intestinal epithelial cells towards Salmonella enterica serovar Typhimurium. Furthermore, their capacity to modulate toll-like receptor expression of HT29 cells was investigated at the mRNA and protein levels. TNF-alpha was used in cell culture with HT29 cells to mimic an inflammatory background, and in the presence of this chemokine HT29 cells were sensitised to respond to the Lactobacillus strains as evidenced by an increased response in IL-8 production. In addition, when HT29 cells were first treated with lactobacilli and then infected with S. Typhimurium, the IL-8 levels in response to S. Typhimurium were significantly higher, indicating that HT29 cells were sensitised by lactobacilli. Neither of the lactobacilli was able to stimulate TLR4 production at the mRNA level, however, TLR2 and TLR9 transcription levels measured by quantitative PCR were up-regulated when HT29 cells were incubated with lactobacilli, but not with S. Typhimurium. Up-regulation of TLR9 expression was higher for L. rhamnosus GG than for L. plantarum BFE 1685. Expression levels of TLR2 and TLR5 were enhanced also at the protein level as determined by flow cytometry after staining with the respective antibodies. In contrast, TLR9 expression was not significantly up-regulated, which may be explained by protein degradation, or possible down-stream regulatory effects. These findings show that stimulation of specific signaling pathways occurs in the cross-talk between probiotic bacteria and gut epithelium cells, which can help to explain the adjuvant properties of probiotic lactobacilli.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijfoodmicro.2009.05.013DOI Listing

Publication Analysis

Top Keywords

ht29 cells
24
cells
9
lactobacilli stimulate
8
innate immune
8
immune response
8
ht29
8
expression ht29
8
ht29 intestinal
8
intestinal epithelial
8
epithelial cells
8

Similar Publications

The present study aimed to investigate the ability of an aqueous extract derived from mustard seed meal to counteract the effects of endotoxin lipopolysaccharide (LPS) on the intestinal epithelium. Caco-2 cells were cultured together with HT29-MTX and used as a cellular model to analyze critical intestinal parameters, such as renewal, integrity, innate immunity, and signaling pathway. Byproducts of mustard seed oil extraction are rich in soluble polysaccharides, proteins, allyl isothiocyanates, and phenolic acids, which are known as powerful antioxidants with antimicrobial and antifungal properties.

View Article and Find Full Text PDF

London rocket () is a wild green consumed globally, yet its phytochemical composition remains underexplored. In this study, we analyzed the leaves of wild plants and those grown in controlled environments (GCE) with varying electrical conductivities (EC) and light spectra. Plants were assessed for growth, phenolic content, vitamin C, antioxidant activity, glucosinolates, and antiproliferative effects against HT-29 human colorectal cancer cells.

View Article and Find Full Text PDF

Immune cells are pivotal components in the tumor microenvironment (TME), which can interact with tumor cells and significantly influence cancer progression and therapeutic outcomes. Therefore, classifying cancer patients based on the status of immune cells within the TME is increasingly recognized as an effective approach to identify prognostic biomarkers, paving the way for more effective and personalized cancer treatments. Considering the high incidence and mortality of colorectal cancer (CRC), in this study, an integrated machine learning survival framework incorporating 93 different algorithmic combinations was utilized to determine the optimal strategy for developing an immune-related prognostic signature (IRPS) based on the average C-index across the four CRC cohorts.

View Article and Find Full Text PDF

Encapsulation of hydrophobically ion-paired teduglutide in nanoemulsions: Effect of anionic counterions.

Food Chem

January 2025

Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea. Electronic address:

This study presents a novel method for encapsulating the bioactive peptide teduglutide to enhance its oral bioavailability using O/W nanoemulsion (NE). Recombinant teduglutide (rTGT), produced in E. coli with 93 % purity, was hydrophobically modified through ion-pairing with phytic acid (PA) and sodium dodecyl sulfate (SDS).

View Article and Find Full Text PDF

In this research, a series of novel hydrazone derivatives based on pyrazolopyridothiazinylacetohydrazide were designed, synthesized, and evaluated for their in vitro cytotoxic potency on several human colon cancer cells (HTC116, HT-29, and LoVo). After MTT and SRB assays four of the most active derivatives: hydrazide GH and hydrazones GH7, GH8, and GH11, were chosen for further investigation. Hydrazone GH11 had the highest cytotoxic activity (IC50 values of c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!