Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Magnetically-assisted chemical separation/preconcentration method for the analysis of beryllium from aqueous solutions was developed. According to this method several extractants were coated on certain magnetic microparticles to assist the extraction of beryllium from the aqueous solutions. The influence of different parameters (type and amount of extractant, pH, equilibrium time and ionic strength) was investigated. Also, the interfering effect of various cationic and anionic species on the percent recovery of beryllium was studied. The applied spectrophotometric method showed good linearity and precision at a given wavelength (605.0 nm). Among the extractants used, quinalizarine resulted in almost a full recovery of beryllium at pH 7.4, which was the optimum extraction pH. The equilibrium time of the extraction was 10.0 min. The quantitative re-extraction was carried out by 0.5 M nitric acid. Also, the stability of the extractant-coated magnetic microparticles was 4 cycles (extraction and re-extraction) and the used magnetic microparticles showed good selectivity for beryllium against other cations and anions. Finally, the developed method was applicable for the preconcentration and separation of beryllium from spring water, tap water and certified reference waters. The obtained detection limit was 30 ng L(-1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2009.05.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!