AI Article Synopsis

  • ARIP2 is a protein that regulates activin signaling, which is important for FSH secretion in reproductive tissues.
  • Recent studies show that ARIP2 is widely expressed in various mouse tissues, including the heart, testis, and lungs.
  • Overexpression of ARIP2 leads to a decrease in activin-induced signaling and FSH secretion in pituitary cells, indicating it may act as a negative regulator in this process.

Article Abstract

Activin plays important roles in reproductive tissues as a stimulator of follicle-stimulating hormone (FSH) secretion. Activin receptor-interacting protein 2 (ARIP2) has been recently identified in mouse tissues as a regulatory protein of activin signal transduction. However, the localization and function of ARIP2 are not well characterized. In this study, we found that ARIP2 mRNA and protein were widely expressed in mouse tissues by reverse transcription-PCR (RT-PCR) and Western blotting. The immunoreactivities of ARIP2 were mainly localized at myocardial cells of heart, Leydig cells in testis, macrophages and epithelial cells of bronchus in lung, renal tubule and collecting tubule, pancreatic islet, adrenal gland, adenohypophysis and hypothalamus by immunohistochemical staining. Furthermore, ARIP2 overexpression down-regulated signal transduction induced by activin A in pituitary gonadotroph LbetaT2 cells and inhibited FSH secretion from primary cultured anterior pituitary cells induced by activin A. These findings suggest that ARIP2 is widely distributed in various tissues and may be a negative regulator of activin action in pituitary cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2009.01.020DOI Listing

Publication Analysis

Top Keywords

mouse tissues
12
activin receptor-interacting
8
receptor-interacting protein
8
fsh secretion
8
signal transduction
8
induced activin
8
pituitary cells
8
activin
7
arip2
6
cells
6

Similar Publications

Iron regulatory protein 2 (IRP2), a post-transcriptional regulator of cellular iron metabolism has been associated with susceptibility to chronic obstructive pulmonary disease (COPD). Resistive breathing (RB) is the hallmark of the pathophysiology of obstructive airway diseases, especially during exacerbations, where increased mechanical stress is imposed on the lung. We have previously shown that RB, through tracheal banding, mimicking severe airway obstruction, induces pulmonary inflammation and injury in previously healthy mice.

View Article and Find Full Text PDF

Hyaluronan Directs Alveolar Type II Cell Response to Acute Ozone Exposure in Mice.

Am J Respir Cell Mol Biol

January 2025

Duke Medicine, Medicine, Durham, North Carolina, United States.

Becoming more frequent due to climate change, ozone (O) exposures can cause lung injury. Alveolar type 2 (AT2) cells and hyaluronan (HA), a matrix component, are critical to repairing lung injury and restoring homeostasis. Here, we define the impact of HA on AT2 cells following acute O exposure.

View Article and Find Full Text PDF

Respiratory tract diseases (RTDs) cause airflow limitations and impaired respiratory function, primarily due to pulmonary inflammation and immune dysfunction. var. Kitamur and (CP) are traditional herbs known for their anti-inflammatory and immune-enhancing properties.

View Article and Find Full Text PDF

Changes in the lipid and carbohydrate metabolism, adipokines, and growth factors during the development of metabolic disorders were studied in three mouse models: C57BL/6 (alimentary obesity), db/db (leptin-resistant obesity), and NOD (diabetes mellitus) lines. In the group of alimentary obesity, moderate fatty infiltration of the liver and hypertrophy of the adipose tissue, hyperglycemia, and increased concentrations of adiponectin, transforming growth factor β1 (TGF-β1), leptin, and cholesterol were detected. In the group of leptin-resistant obesity, multiple pathological changes in tissues, severe hyperglycemia and hyperleptinemia, hyperinsulinemia, and reduced concentrations of triglycerides, adiponectin, myostatin, and TGF-β1 were detected.

View Article and Find Full Text PDF

Downregulation of FcRn promotes ferroptosis in herpes simplex virus-1-induced lung injury.

Cell Mol Life Sci

January 2025

School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, China.

Herpes simplex virus type I (HSV-1) infection is associated with lung injury; however, no specific treatment is currently available. In this study, we found a significant negative correlation between FcRn levels and the severity of HSV-1-induced lung injury. HSV-1 infection increases the methylation of the FcRn promoter, which suppresses FcRn expression by upregulating DNMT3b expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!