Parafibromin--functional insights.

J Intern Med

The Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, UK.

Published: July 2009

AI Article Synopsis

  • Parafibromin is a nuclear protein that acts as a tumor suppressor in both hereditary and nonhereditary parathyroid cancers, as well as in the hyperparathyroidism-jaw tumor syndrome.
  • It is part of the PAF1 complex, which is important for controlling gene expression and modifying histones, influencing transcriptional activities.
  • Parafibromin is crucial for regulating genes that affect cell growth and survival, making it significant for both embryonic development and adult health.

Article Abstract

Parafibromin is a predominantly nuclear protein with a tumour suppressor role in the development of hereditary and nonhereditary parathyroid carcinomas, and the hyperparathyroidism-jaw tumour syndrome, which is associated with renal and uterine tumours. Parafibromin is a component of the highly conserved PAF1 complex, which regulates transcriptional events and histone modifications. The parafibromin/PAF1 complex regulates genes involved in cell growth and survival, and via these, parafibromin plays a pivotal role in embryonic development and survival of adults.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2796.2009.02107.xDOI Listing

Publication Analysis

Top Keywords

complex regulates
8
parafibromin--functional insights
4
insights parafibromin
4
parafibromin nuclear
4
nuclear protein
4
protein tumour
4
tumour suppressor
4
suppressor role
4
role development
4
development hereditary
4

Similar Publications

Background: Accurate classification of host phenotypes from microbiome data is crucial for advancing microbiome-based therapies, with machine learning offering effective solutions. However, the complexity of the gut microbiome, data sparsity, compositionality, and population-specificity present significant challenges. Microbiome data transformations can alleviate some of the aforementioned challenges, but their usage in machine learning tasks has largely been unexplored.

View Article and Find Full Text PDF

Background And Purpose: Despite the increasing integration of information technologies in healthcare settings, limited attention has been given to understanding technostress among health practitioners in hospitals. This study aims to assess the prevalence of technostress creators among health practitioners and explore potential factors contributing to its occurrence, with the ultimate goal of informing strategies to mitigate its impact.

Method: Data were collected through a validated questionnaire administered to health practitioners at Tehran Apadana Hospital in Iran.

View Article and Find Full Text PDF

The cytoskeleton is a crucial determinant of mammalian cell structure and function, providing mechanical resilience, supporting the cell membrane and orchestrating essential processes such as cell division and motility. Because of its fundamental role in living cells, developing a reconstituted or artificial cytoskeleton is of major interest. Here we present an approach to construct an artificial cytoskeleton that imparts mechanical support and regulates membrane dynamics.

View Article and Find Full Text PDF

SNX3 mediates heart failure by interacting with HMGB1 and subsequently facilitating its nuclear-cytoplasmic translocation.

Acta Pharmacol Sin

January 2025

National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart.

View Article and Find Full Text PDF

A nucleolar mechanism suppresses organismal proteostasis by modulating TGFβ/ERK signalling.

Nat Cell Biol

January 2025

Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.

The protein homeostasis (proteostasis) network encompasses a myriad of mechanisms that maintain the integrity of the proteome by controlling various biological functions, including protein folding and degradation. Alas, ageing-associated decline in the efficiency of this network enables protein aggregation and consequently the development of late-onset neurodegenerative disorders, such as Alzheimer's disease. Accordingly, the maintenance of proteostasis through late stages of life bears the promise to delay the emergence of these devastating diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!