A completely non-chromatographic and highly large-scale adaptable synthesis of acrylic polymer beads containing proline and prolineamides has been developed. Novel monomeric proline (meth)acrylates are prepared from hydroxyproline in only one step. Free-radical copolymerization then gives solid-supported proline organocatalysts directly in as little as two steps overall, without using any prefabricated solid supports, by using either droplet or dispersion polymerization. These affordable acrylic beads have highly favorable and adjustable swelling characteristics and are excellent reusable catalysts for organocatalytic reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ol901134v | DOI Listing |
Polymers (Basel)
January 2025
Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an 710065, China.
In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil-water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil-water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Energy Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Asan 31538, Republic of Korea.
(Meth)acrylate polymers are commonly used as photoresist materials in photolithography. However, these polymers encounter the problem of swelling during the development process. To address this, we explored the use of a hydrophobic group to control the solubility in the hydrophilic developer.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States.
Acrylic nitriles are a versatile class of synthetic precursors for a variety of pharmaceutically active compounds, as well as for nitrile polymers. We devised a stereoselective synthesis of ()-acrylic nitriles from the Ru-catalyzed coupling reaction of nitriles with unsaturated carbonyl compounds via C-C bond cleavage. Both carbon KIE and Hammett correlation data indicated that C-C bond cleavage is the rate-determining step for the coupling reaction.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
Current hydrogel strain sensors have never been integrated into dynamic organ-on-a-chip (OOC) due to the lack of sensitivity in aqueous cell culture systems. To enhance sensing performance, a novel strain sensor is presented in which the MXene layer is coated on the bottom surface of a pre-stretched anti-swelling hydrogel substrate of di-acrylated Pluronic F127 (F127-DA) and chitosan (CS) for isolation from the cell culture on the top surface. The fabricated strain sensors display high sensitivity (gauge factor of 290.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
Administering medication precisely to the inflamed intestinal sites to treat ulcerative colitis (UC), with minimized side effects, is of urgent need. In UC, the inflammation damaged mucosa contains a large number of amino groups which are positively charged, providing new opportunities for drug delivery system design. Here, we report an oral drug delivery system utilizing the tacrolimus-loaded poly (lactic-co-glycolic acid) (TAC/PLGA) particles with an adhesion coating by in situ UV-triggered polymerization of polyacrylic acid and N-hydroxysuccinimide (PAA-NHS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!