High coercivity (9.47 kOe) has been obtained for oleic acid capped chemically synthesized CoFe(2)O(4) nanoparticles of crystallite size approximately 20 nm. X-ray diffraction analysis confirms the formation of spinel phase in these nanoparticles. Thermal annealing at various temperatures increases the particle size and ultimately shows bulk like properties at particle size approximately 56 nm. The nature of bonding of oleic acid with CoFe(2)O(4) nanoparticles and amount of oleic acid in the sample is determined by Fourier transform infrared spectroscopy and thermogrvimetric analysis, respectively. The Raman analysis suggests that the samples are under strain due to capping molecules. Cation distribution in the sample is studied using Mossbauer spectroscopy. Oleic acid concentration dependent studies show that the amount of capping molecules plays an important role in achieving such a high coercivity. On the basis of above observations, it has been proposed that very high coercivity (9.47 kOe) is the result of the magnetic anisotropy, strain, and disorder of the surface spins developed by covalently bonded oleic acid to the surface of CoFe(2)O(4) nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp810975v | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!