AI Article Synopsis

  • - Primary effusion lymphoma (PEL) is a type of non-Hodgkin's lymphoma linked to AIDS, caused by the Kaposi sarcoma-associated herpes virus (KSHV/HHV-8), characterized by fluid buildup in body cavities and a poor prognosis.
  • - Research showed that cepharanthine (CEP), a biscoclaurine alkaloid, significantly suppresses cell growth in PEL cell lines and induces cell death by inhibiting the NF-kappaB pathway, which is crucial for cancer development.
  • - An animal model mimicking human PEL demonstrated that administering CEP reduced fluid buildup and organ infiltration without major side effects, suggesting it could be an effective treatment target for PEL.

Article Abstract

Primary effusion lymphoma (PEL) is a unique and recently identified non-Hodgkin's lymphoma that was originally identified in patients with AIDS. PEL is caused by the Kaposi sarcoma-associated herpes virus (KSHV/HHV-8) and shows a peculiar presentation involving liquid growth in the serous body cavity and a poor prognosis. As the nuclear factor (NF)-kappaB pathway is activated in PEL and plays a central role in oncogenesis, we examined the effect of a biscoclaurine alkaloid, cepharanthine (CEP) on PEL derived cell lines (BCBL-1, TY-1 and RM-P1), in vitro and in vivo. An methylthiotetrazole assay revealed that the cell proliferation of PEL cell lines was significantly suppressed by the addition of CEP (1-10 microg/ml). CEP also inhibited NF-kappaB activation and induced apoptotic cell death in PEL cell lines. We established a PEL animal model by intraperitoneal injection of BCBL-1, which led to the development of ascites and diffuse infiltration of organs, without obvious solid lymphoma formation, which resembles the diffuse nature of human PEL. Intraperitoneal administration of CEP inhibited ascites formation and diffuse infiltration of BCBL-1 without significant systemic toxicity in this model. These results indicate that NF-kappaB could be an ideal molecular target for treating PEL and that CEP is quite useful as a unique therapeutic agent for PEL.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.24521DOI Listing

Publication Analysis

Top Keywords

cell lines
12
pel
10
biscoclaurine alkaloid
8
alkaloid cepharanthine
8
primary effusion
8
effusion lymphoma
8
vitro vivo
8
nf-kappab pathway
8
pel cell
8
cep inhibited
8

Similar Publications

The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.

View Article and Find Full Text PDF

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!