Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The epithelial sodium channel (ENaC) mediates the first step in Na+ reabsorption in epithelial cells such as kidney, colon, and airways and may consist of four homologous subunits (alpha, beta, gamma, delta). Predominantly, the alpha-subunit is expressed in these epithelia, and it usually forms functional channels with the beta- and gamma-subunits. The delta-subunit was first found in human brain and kidney, but the expression was also detected in human cell lines of lung, pancreatic, and colonic origin. When co-expressed with beta and gamma accessory subunits in heterologous systems, the two known isoforms of the delta-ENaC subunit (delta1 and delta2) can build amiloride-sensitive Na+ channels. In the present study we demonstrate the expression and function of the delta-subunit in human nasal epithelium (HNE). We cloned and sequenced the full-length cDNA of the delta-ENaC subunit and were able to show that in nasal tissue at least isoform 1 is expressed. Furthermore, we performed Western blot analyses and compared the cell surface expression of the delta-subunit with the classically expressed alpha-subunit by using immunofluorescence experiments. Thereby, we could show that the quantity of both subunits is almost similar. In addition, we show the functional expression of the delta-ENaC subunit with measurements in modified Ussing chambers, and demonstrate that in HNE a large portion of the Na+ transport is mediated by the delta-ENaC subunit. Therefore, we suppose that the delta-subunit may possess an important regulatory function and might interact with other ENaC subunits or members of the DEG/ENaC family in the human respiratory epithelium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1165/rcmb.2009-0053OC | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!