Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The spinal cord is endogenously capable of several forms of adaptive plasticity and learning, including functional re-training, instrumental, and Pavlovian learning. Understanding the mechanisms of spinal plasticity could lead to improved therapies for spinal cord injury and other neuromotor disorders. We describe and demonstrate techniques for eliciting spinal learning in the adult mouse using the Horridge paradigm. In the Horridge paradigm, instrumental learning occurs when a nociceptive leg stimulus is made to be contingent on leg position and the spinal cord learns to maintain the ankle in a flexed position. Using fine-wire intramuscular stimulating electrodes, an inexpensive real-time video tracking system, and DC current stimulation, we were able to elicit instrumental spinal learning from mouse lumbrosacral spinal cords that were functionally isolated from the brain. This technique makes it more feasible to use the powerful genetic manipulations available in mice to better understand the processes of spinal learning, memory, and plasticity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727573 | PMC |
http://dx.doi.org/10.1016/j.jneumeth.2009.06.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!