Evaluating regional blood spinal cord barrier dysfunction following spinal cord injury using longitudinal dynamic contrast-enhanced MRI.

BMC Med Imaging

Preclinical Imaging in Translational Research Laboratory, Radiology and Radiological Science, Medical University of South Carolina, 169 Ashley Avenue, Charleston, SC 29425, USA.

Published: June 2009

Background: In vivo preclinical imaging of spinal cord injury (SCI) in rodent models provides clinically relevant information in translational research. This paper uses multimodal magnetic resonance imaging (MRI) to investigate neurovascular pathology and changes in blood spinal cord barrier (BSCB) permeability following SCI in a mouse model of SCI.

Methods: C57BL/6 female mice (n = 5) were subjected to contusive injury at the thoracic T11 level and scanned on post injury days 1 and 3 using anatomical, dynamic contrast-enhanced (DCE-MRI) and diffusion tensor imaging (DTI). The injured cords were evaluated postmortem with histopathological stains specific to neurovascular changes. A computational model was implemented to map local changes in barrier function from the contrast enhancement. The area and volume of spinal cord tissue with dysfunctional barrier were determined using semi-automatic segmentation.

Results: Quantitative maps derived from the acquired DCE-MRI data depicted the degree of BSCB permeability variations in injured spinal cords. At the injury sites, the damaged barriers occupied about 70% of the total cross section and 48% of the total volume on day 1, but the corresponding measurements were reduced to 55% and 25%, respectively on day 3. These changes implied spatio-temporal remodeling of microvasculature and its architecture in injured SC. Diffusion computations included longitudinal and transverse diffusivities and fractional anisotropy index. Comparison of permeability and diffusion measurements indicated regions of injured cords with dysfunctional barriers had structural changes in the form of greater axonal loss and demyelination, as supported by histopathologic assessments.

Conclusion: The results from this study collectively demonstrated the feasibility of quantitatively mapping regional BSCB dysfunction in injured cord in mouse and obtaining complementary information about its structural integrity using in vivo DCE-MRI and DTI protocols. This capability is expected to play an important role in characterizing the neurovascular changes and reorganization following SCI in longitudinal preclinical experiments, but with potential clinical implications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714086PMC
http://dx.doi.org/10.1186/1471-2342-9-10DOI Listing

Publication Analysis

Top Keywords

spinal cord
20
blood spinal
8
cord barrier
8
cord injury
8
dynamic contrast-enhanced
8
bscb permeability
8
injured cords
8
neurovascular changes
8
spinal
6
cord
6

Similar Publications

Spinal cord injuries, including rare cases without radiological abnormalities, pose diagnostic challenges, particularly in cases of delayed neurological deficit development. This case report describes a 55-year-old man with a stable L1 burst fracture who developed delayed neurological deficits two weeks after sustaining a fall despite no evidence of intrinsic or extrinsic spinal cord abnormalities on magnetic resonance imaging (MRI). The patient initially presented with back pain, normal muscle strength across all myotomes, and imaging that showed no canal stenosis or retropulsion fragments.

View Article and Find Full Text PDF

3D bioprinted dynamic bioactive living construct enhances mechanotransduction-assisted rapid neural network self-organization for spinal cord injury repair.

Bioact Mater

April 2025

State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

Biomimetic neural substitutes, constructed through the bottom-up assembly of cell-matrix modulus via 3D bioprinting, hold great promise for neural regeneration. However, achieving precise control over the fate of neural stem cells (NSCs) to ensure biological functionality remains challenging. Cell behaviors are closely linked to cellular dynamics and cell-matrix mechanotransduction within a 3D microenvironment.

View Article and Find Full Text PDF

Aim: Atlantoaxial dislocation is a loss of stability between the atlas and axis. It is rarely reported in patients with axial spondylarthritis. We present an axial spondylarthritis case revealed by atlantoaxial subluxation.

View Article and Find Full Text PDF

Complex staged hybrid repair of extent II thoracoabdominal aortic aneurysm secondary to type A aortic dissection.

J Vasc Surg Cases Innov Tech

April 2025

Division of Vascular Surgery, London Health Sciences Center, University of Western Ontario, London, Ontario, Canada.

Despite advancements in surgical techniques and critical care, managing complications of type A and B aortic dissections remains challenging. Common morbidities include paraplegia, renal failure, stroke, and intestinal ischemia. Risks are especially high in extensive repairs, such as Crawford extent II thoracoabdominal aortic aneurysms, and in older patients or those with heart failure, poor pulmonary function, or renal disease.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a severe condition that often leads to permanent functional impairments. The current treatment options are limited and there is a need for more effective treatments. Human umbilical cord mesenchymal stem cells (hUCMSCs) have shown promise in promoting neuroregeneration and modulating immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!