MicroRNAs are key, recently discovered, regulators of gene expression. They are involved in many physiological cellular pathways so it is not surprising that an altered microRNA expression pattern can be involved in the pathogenesis of many disease states. The possibility to manipulate microRNAs to obtain a therapeutical effect is very attractive since they represent specific targets in a particular cellular pathway and because it is quite easy to synthesize short oligonucleotides with the ability to interfere with microRNA mechanism of action. The main problem for microRNA-based therapy is represented by delivery. In the last two years many studies have underlined the involvement of microRNAs in many aspects of ischemic heart disease, the leading cause of morbidity and mortality in the Western World. MiR-29 is involved in fibrotic reaction after myocardial infarction while miR-21 may exert a fundamental role in post-angioplasty restenosis. MiR-208 is involved in the shift toward a fetal gene expression pattern in contractile proteins in heart failure. MiR-1 influences susceptibility to cardiac arrhythmias after myocardial infarction. This review will focus on microRNAs involvement in multiple aspects of ischemic heart disease and on their promising novel therapeutic applications including some recent patents.

Download full-text PDF

Source
http://dx.doi.org/10.2174/157489009788452977DOI Listing

Publication Analysis

Top Keywords

ischemic heart
12
heart disease
12
gene expression
8
expression pattern
8
aspects ischemic
8
myocardial infarction
8
micrornas
5
micrornas ischemic
4
heart
4
disease
4

Similar Publications

Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.

View Article and Find Full Text PDF

The Potential of Neonatal Organ Donation in Central Sweden.

Cell Transplant

January 2025

Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.

Pediatric organ transplant recipients have a higher risk for wait list mortality due to the scarcity of size matched organs. Neonatal organ donation could potentially ameliorate the discrepancy but is currently not implemented in Sweden. This study aims to evaluate the potential of neonatal organ donation in central Sweden using a standardized protocol with organ specific criteria.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a multifaceted disorder with a pandemic spread and a remarkable burden of cardiovascular mortality and morbidity. Diabetic cardiomyopathy (DBCM) has been increasingly recognized as the development of cardiac dysfunction, which is accompanied by heart failure (HF) symptoms in the absence of obvious reasons like ischemic heart disease, hypertension, or valvulopathies. Several pathophysiological mechanisms have been proposed, including metabolic disorders (e.

View Article and Find Full Text PDF

Janus kinase inhibitors (JAKi) have revolutionized the treatment of various inflammatory and immune disorders. Concerns about the potential increased risk of major adverse cardiovascular events (MACEs) associated with JAKi use led to a European Medicines Agency (EMA) health alert recommending restricting the use of JAKi in high-risk populations. This study aims to determine the proportion of patients who developed any cardiovascular, ischemic, neoplastic, or thrombotic adverse event in a cohort of patients receiving, or who have received, JAKi treatment between January 2017 and September 2023.

View Article and Find Full Text PDF

State of the Art of Primary PCI: Present and Future.

J Clin Med

January 2025

Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx, New York, NY 10467, USA.

Primary percutaneous coronary intervention (PCI) has revolutionized the management of ST-elevation myocardial infarction (STEMI), markedly improving patient outcomes. Despite technological advancements, pharmacological innovations, and refined interventional techniques, STEMI prognosis remains burdened by a persistent incidence of cardiac death and heart failure (HF), with mortality rates plateauing over the last decade. This review examines current practices in primary PCI, focusing on critical factors influencing patient outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!