Regenerative Medicine, a recent new medical domain, aims to develop new therapies through the stimulation of natural regenerative processes also in human beings. In this field, Erythropoietin (EPO) represents a significant subject of research. Several studies allow the assertion that EPO, in different concentrations, has protective effects mainly on the central nervous system, cardiovascular system and renal tissue. This action is carried out through one of few regenerative activities of human beings: angiogenesis. This mechanism, which involves endothelial stem cells and VEGF (Vascular Endothelial Growth Factor), has been experimentally demonstrated with Recombinant human erythropoietin (rHuEPO) and Darbepoetin, a long-acting EPO derivate. Furthermore, the demonstration of a cardiac production of EPO in Fugu rubripes and in Zebrafish has led cardiologists to "discover" Erythropoietin, postulating a hypothetical role in treatment of cardiovascular disease for this hormone. This is some of the experimental evidence which demonstrates that EPO can be in reason considered an important element of research of Regenerative Medicine and put in the network of drugs able to regenerate tissues and organs.

Download full-text PDF

Source
http://dx.doi.org/10.2174/138161209788453194DOI Listing

Publication Analysis

Top Keywords

regenerative medicine
12
human beings
8
regenerative
5
epo
5
erythropoietin
4
medicine erythropoietin
4
erythropoietin role?
4
role? regenerative
4
medicine medical
4
medical domain
4

Similar Publications

The hidden weavers: A review of DNA/RNA R-loops in stem cell biology and therapeutic potential.

Int J Biol Macromol

January 2025

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China. Electronic address:

R-loops, three-stranded nucleic acid structures composed of RNA-DNA hybrids, are increasingly recognized as central regulators of genomic stability and transcription. These structures play critical roles across various cellular processes, including DNA replication, repair, and gene regulation, with significant implications for stem cell biology and disease pathogenesis. This review comprehensively explores the molecular underpinnings of R-loop formation, emphasizing the dual nature of R-loops in both facilitating normal cellular functions and contributing to genomic instability.

View Article and Find Full Text PDF

c-FLIP/Ku70 complex; A potential molecular target for apoptosis induction in hepatocellular carcinoma.

Arch Biochem Biophys

January 2025

Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden. Electronic address:

Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide and the most common form of liver cancer. Despite global efforts toward early diagnosis and effective treatments, HCC is often diagnosed at advanced stages, where conventional therapies frequently lead to resistance and/or high recurrence rates. Therefore, novel biomarkers and promising medications are urgently required.

View Article and Find Full Text PDF

The maturation state and density of human cartilage microtissues influence their fusion and development into scaled-up grafts.

Acta Biomater

January 2025

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland. Electronic address:

Functional cartilaginous tissues can potentially be engineered by bringing together numerous microtissues (µTs) and allowing them to fuse and re-organize into larger, structurally organized grafts. The maturation level of individual microtissues is known to influence their capacity to fuse, however its impact on the long-term development of the resulting tissue remains unclear. The first objective of this study was to investigate the influence of the maturation state of human bone-marrow mesenchymal stem/stromal cells (hBM-MSCSs) derived microtissues on their fusion capacity and the phenotype of the final engineered tissue.

View Article and Find Full Text PDF

Longitudinal single-cell profiles of lung regeneration after viral infection reveal persistent injury-associated cell states.

Cell Stem Cell

January 2025

Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:

Functional regeneration of the lung's gas exchange surface following injury requires the coordination of a complex series of cell behaviors within the alveolar niche. Using single-cell transcriptomics combined with lineage tracing of proliferating progenitors, we examined mouse lung regeneration after influenza injury, demonstrating an asynchronously phased response across different cellular compartments. This longitudinal atlas of injury responses has produced a catalog of transient and persistent transcriptional alterations in cells as they transit across axes of differentiation.

View Article and Find Full Text PDF

Menin orchestrates macrophage reprogramming to maintain the pulmonary immune homeostasis.

Cell Rep

January 2025

Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China; State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, P.R. China. Electronic address:

Menin is a scaffold protein encoded by the Men1 gene, and it interacts with a variety of chromatin regulators to activate or repress cellular processes. The potential importance of menin in immune regulation remains unclear. Here, we report that myeloid deletion of Men1 results in the development of spontaneous pulmonary alveolar proteinosis (PAP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!