Interferometry of attosecond pulse trains in the extreme ultraviolet wavelength region.

Phys Rev Lett

Extreme Photonics Research Group, Advanced Science Institute, RIKEN, Wako-shi, Hirosawa 2-1, Saitama 351-0198, Japan.

Published: May 2009

The temporal coherence of an attosecond optical field in the extreme ultraviolet wavelength region can be defined in terms of the extent of interference in time domain. We successfully measured this phenomenon both with and without spectral decomposition. We also report the results of using this approach to directly observe both symmetry and symmetry breaking of interference fringes in an attosecond pulse train.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.102.213904DOI Listing

Publication Analysis

Top Keywords

attosecond pulse
8
extreme ultraviolet
8
ultraviolet wavelength
8
wavelength region
8
interferometry attosecond
4
pulse trains
4
trains extreme
4
region temporal
4
temporal coherence
4
coherence attosecond
4

Similar Publications

We investigate the ultrafast electron correlation effects during non-sequential double ionization (NSDI) of argon subjected to a combined femtosecond field composed of counter-rotating two-color circularly polarized (TCCP) pulse laser using a 3D classical ensemble model (CEM). Our simulation results reveal that manipulation of the carrier-envelope phase (CEP) of the external driving field modulates the dynamical behavior of the two electrons, resulting in a notable sensitivity of their momentum distribution to the relative phase of two components of the counter-rotating TCCP field. Through inversion analysis, we uncover the capability to direct electrons toward a single direction, thereby facilitating focused ion-electron collisions on the attosecond timescale.

View Article and Find Full Text PDF

We present the subcycle spectral structures from attosecond transient absorption spectra of helium by accurately solving the full three-dimensional time-dependent Schrödinger equation in extreme ultraviolet attosecond pulse and an orthogonally polarized infrared (IR) laser field. We discover that the subcycle spectral features associated with the dressed 1 ( ≥ 4) states and light-induced states, referred to as , , and , can be strongly modified or even enhanced when the strength ratio of the orthogonal laser field in two polarized laser directions changes. To understand the spectral evolution of the subcycle structures, we perform calculations of the time-dependent population and time-frequency analysis.

View Article and Find Full Text PDF

A dual pulse retrieval algorithm is introduced that builds upon time-domain interferometric strong-field ionization to simultaneously reconstruct both involved laser pulses in a waveform-resolved manner. The pulse characterization scheme removes many restrictions posed by former methods, leaving the avoidance of resonant ionization as a single boundary. It is widely and easily applicable at low cost and effort for common attosecond beamlines and allows for the robust and accurate in-situ retrieval of two unknown laser fields.

View Article and Find Full Text PDF

Attosecond Rescattering of Laser-Assisted Electron-Proton Collision in Coulomb Potential.

J Phys Chem A

January 2025

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.

This study investigates the motion of an electron in a Coulomb potential driven by an intense linearly polarized XUV laser pulse analyzed using Gordon-Volkov wave functions. The wave function is decomposed into spherical partial waves to model the scattered electron wave packet after the recollision with a proton. This interaction triggers high harmonic generation, producing coherent X-ray pulses with frequencies that are integer multiples of the XUV field.

View Article and Find Full Text PDF

Convergent-beam attosecond x-ray crystallography.

Struct Dyn

January 2025

Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.

Sub-ångström spatial resolution of electron density coupled with sub-femtosecond to few-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation, such as by soft X-rays. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here, we propose to reach this realm by employing convergent-beam x-ray crystallography with high-power attosecond pulses from a hard-x-ray free-electron laser.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!