Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Many proposals for quantum information processing are subject to detectable loss errors. In this Letter, we show that topological error correcting codes, which protect against computational errors, are also extremely robust against losses. We present analytical results showing that the maximum tolerable loss rate is 50%, which is determined by the square-lattice bond percolation threshold. This saturates the bound set by the no-cloning theorem. Our numerical results support this and show a graceful trade-off between tolerable thresholds for computational and loss errors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.102.200501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!