Breaking strain of neutron star crust and gravitational waves.

Phys Rev Lett

Department of Physics and Nuclear Theory Center, Indiana University, Bloomington, Indiana 47405, USA.

Published: May 2009

AI Article Synopsis

  • Mountains on rapidly rotating neutron stars can emit significant gravitational waves, and their size is determined by the strength of the neutron star's crust.
  • Simulations indicate that pure single crystal structures have a high breaking strain, and the presence of impurities and defects only slightly reduces it to around 0.1.
  • The strength of the neutron star crust may allow for the formation of large mountains that impact the spin periods of certain stars, which may be detectable by large-scale interferometers, and could also provide insights into phenomena like magnetar flares.

Article Abstract

Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of the neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Because of the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gravitational wave radiation could limit the spin periods of some stars and might be detectable in large-scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in magnetar giant flares and microflares.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.102.191102DOI Listing

Publication Analysis

Top Keywords

breaking strain
16
neutron star
16
star crust
16
strain neutron
8
gravitational waves
8
neutron
5
crust
5
breaking
4
star
4
crust gravitational
4

Similar Publications

The symmetry breaking that is formed when oxide layers are combined epitaxially to form heterostructures has led to the emergence of new functionalities beyond those observed in the individual parent materials. SrTiO-based heterostructures have played a central role in expanding the range of functional properties arising at the heterointerface and elucidating their mechanistic origin. The heterostructure formed by the epitaxial combination of spinel γ-AlO and perovskite SrTiO constitutes a striking example with features distinct from perovskite/perovskite counterparts such as the archetypical LaAlO/SrTiO heterostructure.

View Article and Find Full Text PDF

Influence of Graphene Oxide on Mechanical and Morphological Properties of Nafion Membranes.

Nanomaterials (Basel)

January 2025

Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.

This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.

View Article and Find Full Text PDF

Microbial isolates from sugar crop processing facilities were tested for sensitivity to several industrial antimicrobial agents to determine optimal dosing. Hydritreat 2216 showed broad spectrum activity against all bacterial isolates as well as Saccharomyces cerevisiae. Sodium hypochlorite showed broad spectrum activity against all isolates, but at much higher effective concentrations.

View Article and Find Full Text PDF

Glycerol-(9,10-trioxolane) trioleate (OTOA) is a promising material that combines good plasticizing properties for PLA with profound antimicrobial activity, which makes it suitable for application in state-of-the-art biomedical and packaging materials with added functionality. On the other hand, application of OTOA in PLA-based antibacterial materials is hindered by a lack of knowledge on kinetics of the OTOA release. In this work, the release of glycero-(9,10-trioxolane) trioleate (OTOA) from PLA films with 50% OTOA content was studied during incubation in normal saline solution, and for the first time, the kinetics of OTOA release from PLA film was evaluated.

View Article and Find Full Text PDF

Damage in composite laminates evolves through complex interactions of different failure modes, influenced by load type, environment, and initial damage, such as from transverse impact. This paper investigates damage growth in cross-ply polymeric matrix laminates under tensile load, focusing on three primary failure modes: transverse matrix cracks, delaminations, and fiber breaks in the primary loadbearing 0-degree laminae. Acoustic emission (AE) techniques can monitor and quantify damage in real time, provided the signals from these failure modes can be distinguished.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!