We use inelastic neutron scattering to measure the magnetic excitations in underdoped La2-xSrxCuO4 (x=0.085, T_{c}=22 K) for large energy (5
Download full-text PDF
Source
http://dx.doi.org/10.1103/PhysRevLett.102.167002 DOI Listing Publication Analysis
Top Keywords
Neuroscience
January 2025
School of Health and Human Sciences, Indiana University Indianapolis Indianapolis IN USA.
Most activities of daily life involve some degree of coordinated, bimanual activity from the upper limbs. However, compared to single-handed movements, bimanual movements are processed, learned, and controlled from both hemispheres of the brain. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that enhances motor learning by modulating the activity of movement-associated brain regions.
View Article and Find Full Text PDFExp Physiol
January 2025
Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Australia.
Blood flow restriction (BFR) combined with low work rate exercise can enhance muscular and cardiovascular fitness. However, whether neural mechanisms mediate these enhancements remains unknown. This study examined changes in corticospinal excitability and motor cortical inhibition following arm cycle ergometry with and without BFR.
View Article and Find Full Text PDFNat Mater
January 2025
School of Physics, Zhejiang University, Hangzhou, China.
In ordered magnets, the elementary excitations are spin waves (magnons), which obey Bose-Einstein statistics. Similarly to Cooper pairs in superconductors, magnons can be paired into bound states under attractive interactions. The Zeeman coupling to a magnetic field is able to tune the particle density through a quantum critical point, beyond which a 'hidden order' is predicted to exist.
View Article and Find Full Text PDFNat Commun
January 2025
School of Engineering Sciences, KTH Royal Institute of Technology, Applied Physics, AlbaNova, SE-106 91, Stockholm, Sweden.
Surface plasmons offer a promising avenue in the pursuit of swift and localized manipulation of magnetism for advanced magnetic storage and information processing technology. However, observing and understanding spatiotemporal interactions between surface plasmons and spins remains challenging, hindering optimal optical control of magnetism. Here, we demonstrate the spatiotemporal observation of patterned ultrafast demagnetization dynamics in permalloy mediated by propagating surface plasmon polaritons with sub-picosecond time- and sub-μm spatial- scales by employing Lorentz ultrafast electron microscopy combined with excitation through transient optical gratings.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, P.R. China.
Currently, the study of cuproptosis focuses on the Cu-induced morphology changes in mitochondria (Mito), and the observation of the effect of endoplasmic reticulum (ER)-related Cu content on cuproptosis is relatively lacking. Herein, we have developed a hydroxyflavone (HF)-based NIR excited two-photon fluorescent probe, BHCO, that exhibits specific recognition of Cu with high resolution. BHCO-Cu (Cu2BC) can lead to DLAT protein aggregation, triggering cuproptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!