Ultradiscrete optimal velocity model: a cellular-automaton model for traffic flow and linear instability of high-flux traffic.

Phys Rev E Stat Nonlin Soft Matter Phys

Graduate School of Mathematical Sciences, Department of Aeronautics and Astronautics, Faculty of Engineering, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, Japan.

Published: May 2009

In this paper, we propose the ultradiscrete optimal velocity model, a cellular-automaton model for traffic flow, by applying the ultradiscrete method for the optimal velocity model. The optimal velocity model, defined by a differential equation, is one of the most important models; in particular, it successfully reproduces the instability of high-flux traffic. It is often pointed out that there is a close relation between the optimal velocity model and the modified Korteweg-de Vries (mkdV) equation, a soliton equation. Meanwhile, the ultradiscrete method enables one to reduce soliton equations to cellular automata which inherit the solitonic nature, such as an infinite number of conservation laws, and soliton solutions. We find that the theory of soliton equations is available for generic differential equations and the simulation results reveal that the model obtained reproduces both absolutely unstable and convectively unstable flows as well as the optimal velocity model.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.79.056108DOI Listing

Publication Analysis

Top Keywords

optimal velocity
24
velocity model
24
model
9
ultradiscrete optimal
8
model cellular-automaton
8
cellular-automaton model
8
model traffic
8
traffic flow
8
instability high-flux
8
high-flux traffic
8

Similar Publications

Impact of measurement location on direct mitral regurgitation quantification using 4D flow CMR.

J Cardiovasc Magn Reson

January 2025

Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. Electronic address:

Background: Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) shows promise for quantifying mitral regurgitation (MR) by allowing for direct regurgitant volume (RVol) measurement using a plane precisely placed at the MR jet. However, the ideal location of a measurement plane remains unclear. This study aims to systematically examine how varying measurement locations affect RVol quantification and determine the optimal location using the momentum conservation principle of a free jet.

View Article and Find Full Text PDF

Additive-free 3D-printed nanostructured carboxymethyl cellulose aerogels.

Int J Biol Macromol

January 2025

Mines Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, Rue Claude Daunesse, 06904 Sophia Antipolis, France. Electronic address:

3D printing of polysaccharide solutions is widely recognized as a highly promising method in the biomedical field for achieving complex customized shapes. One of the main challenges is in selecting conditions, in particular, the rheological properties of the system, to retain the printed shape. For the first time, the direct ink writing (DIW) is successfully applied to neat carboxymethyl cellulose (CMC) solutions without any additives or crosslinking, only by adjusting solutions' rheological properties.

View Article and Find Full Text PDF

Resistance training (RT) load and volume are considered crucial variables to appropriately prescribe and manage for eliciting the targeted acute responses (i.e., minimizing neuromuscular fatigue) and chronic adaptations (i.

View Article and Find Full Text PDF

Review of upper extremity passive joint impedance identification in people with Duchenne Muscular Dystrophy.

J Neuroeng Rehabil

January 2025

Department of BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, South-Holland, The Netherlands.

Duchenne Muscular Dystrophy (DMD) progressively leads to loss of limb function due to muscle weakness. The incurable nature of the disease shifts the focus to improving quality of life, including assistive supports to improve arm function. Over time, the passive joint impedance (Jimp) of people with DMD increases.

View Article and Find Full Text PDF

Simulation of the performance of pillar array columns using the pore-throat ratio as efficiency descriptor.

J Chromatogr A

January 2025

Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.

Traditional packed beds in chromatography suffer from increased band broadening due to the random nature of packing, leading non-ideal fluid flow and channeling. To address these challenges, pillar array columns have been developed, offering improved performance over random packing thanks to their homogenous fluid profiles. The study aims to i) evaluate fluid dynamics and chromatographic performance across different PAC morphologies, ii) establish the influence of column morphology on performance, and iii) assess the correlation between chromatographic performance and hydrodynamic parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!