We study pairwise Ising models for describing the statistics of multineuron spike trains, using data from a simulated cortical network. We explore efficient ways of finding the optimal couplings in these models and examine their statistical properties. To do this, we extract the optimal couplings for subsets of size up to 200 neurons, essentially exactly, using Boltzmann learning. We then study the quality of several approximate methods for finding the couplings by comparing their results with those found from Boltzmann learning. Two of these methods--inversion of the Thouless-Anderson-Palmer equations and an approximation proposed by Sessak and Monasson--are remarkably accurate. Using these approximations for larger subsets of neurons, we find that extracting couplings using data from a subset smaller than the full network tends systematically to overestimate their magnitude. This effect is described qualitatively by infinite-range spin-glass theory for the normal phase. We also show that a globally correlated input to the neurons in the network leads to a small increase in the average coupling. However, the pair-to-pair variation in the couplings is much larger than this and reflects intrinsic properties of the network. Finally, we study the quality of these models by comparing their entropies with that of the data. We find that they perform well for small subsets of the neurons in the network, but the fit quality starts to deteriorate as the subset size grows, signaling the need to include higher-order correlations to describe the statistics of large networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.79.051915 | DOI Listing |
Chronobiol Int
January 2025
Google LLC, San Francisco, California, USA.
Circadian rhythms are governed by a biological clock, and are known to occur in a variety of physiological processes. We report results on the circadian rhythm of heart rate observed using a wrist-worn wearable device (Fitbit), consisting of over 17,000 individuals over the course of 30 days. We obtain an underlying heart rate circadian rhythm from the time series heart rate by modeling the circadian rhythm as a sum over the first two Fourier harmonics.
View Article and Find Full Text PDFBMC Surg
January 2025
Department of Obstetrics and Gynaecology, Krankenhaus Sachsenhausen, Frankfurt Am Main, Germany.
Background: Total laparoscopic hysterectomy (TLH) is nowadays the standard to treat benign and malignant disease occurring in the uterus, but the number of robotic-assisted surgeries is increasing worldwide. To facilitate the handling of sutures in a bi- and tri-dimensional plane, a new type of suture material has been developed, named barbed sutures, which are in use in different indications. In comparison to conventional suture materials, the barbs anchor the suture in the tissue, provide tissue approximation and prevent slippage without the need for knot tying.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
January 2025
Institute of Mathematical Sciences Centre for Health Analytics and Modelling (CHaM), Strathmore University, Nairobi, Kenya.
Background: Measures of diagnostic test accuracy provide evidence of how well a test correctly identifies or rules-out disease. Commonly used diagnostic accuracy measures (DAMs) include sensitivity and specificity, predictive values, likelihood ratios, area under the receiver operator characteristic curve (AUROC), area under precision-recall curves (AUPRC), diagnostic effectiveness (accuracy), disease prevalence, and diagnostic odds ratio (DOR) etc. Most available analysis tools perform accuracy testing for a single diagnostic test using summarized data.
View Article and Find Full Text PDFBMC Med Imaging
January 2025
Department of Magnetic Resonance Imaging, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.
Background: Conventional hip joint MRI scans necessitate lengthy scan durations, posing challenges for patient comfort and clinical efficiency. Previously, accelerated imaging techniques were constrained by a trade-off between noise and resolution. Leveraging deep learning-based reconstruction (DLR) holds the potential to mitigate scan time without compromising image quality.
View Article and Find Full Text PDFMicrosc Microanal
January 2025
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195, Germany.
In catalysis research, the amount of microscopy data acquired when imaging dynamic processes is often too much for nonautomated quantitative analysis. Developing machine learned segmentation models is challenged by the requirement of high-quality annotated training data. We thus substitute expert-annotated data with a physics-based sequential synthetic data model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!