AI Article Synopsis

Article Abstract

We investigate numerically and analytically the effects of conservation of total translational and angular momentum on the distribution of kinetic energy among particles in microcanonical particle systems with small number of degrees of freedom, specifically microclusters. Molecular dynamics simulations of microclusters with constant total energy and momenta, using Lennard-Jones, Morse, and Coulomb plus Born-Mayer-type potentials, show that the distribution of kinetic energy among particles can be inhomogeneous and depend on particle mass and position even in thermal equilibrium. Statistical analysis using a microcanonical measure taking into account of the additional conserved quantities gives theoretical expressions for kinetic energy as a function of the mass and position of a particle with only O(1/N;{2}) deviation from the Maxwell-Boltzmann distribution. These expressions fit numerical results well. Finally, we propose an intuitive interpretation for the inhomogeneity of the kinetic energy distributions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.79.051101DOI Listing

Publication Analysis

Top Keywords

kinetic energy
16
translational angular
8
angular momentum
8
distribution kinetic
8
energy particles
8
mass position
8
energy
6
momentum conservation
4
conservation energy
4
energy equipartition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!