Structural crossover of polymers in disordered media.

Phys Rev E Stat Nonlin Soft Matter Phys

Minerva Center and Department of Physics, Bar-Ilan University, Ramat Gan, Israel.

Published: May 2009

We present a unified scaling theory for the structural behavior of polymers embedded in a disordered energy substrate. An optimal polymer configuration is defined as the polymer configuration that minimizes the sum of interacting energies between the monomers and the substrate. The fractal dimension of the optimal polymer in the limit of strong disorder (SD) was found earlier to be larger than the fractal dimension in weak disorder (WD). We introduce a scaling theory for the crossover between the WD and SD limits. For polymers of various sizes in the same disordered substrate we show that polymers with a small number of monomers N<>N* will behave as in WD. This implies that small polymers will be relatively more compact compared to large polymers even in the same substrate. The crossover length N* is a function of nu and a , where nu is the percolation correlation length exponent and a is the parameter which controls the broadness of the disorder. Furthermore, our results show that the crossover between the strong and weak disorder limits can be seen even within the same polymer configuration. If one focuses on a segment of size n<>N*) that segment will have a higher fractal dimension compared to a segment of size n>>N*.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.79.050102DOI Listing

Publication Analysis

Top Keywords

polymer configuration
12
fractal dimension
12
scaling theory
8
optimal polymer
8
weak disorder
8
segment size
8
polymers
6
structural crossover
4
crossover polymers
4
polymers disordered
4

Similar Publications

Manipulating Crystal Packing and Self-Assembly by π-Extended and Isomeric Fused Strategies in Thiophene Ring-Terminated Polycyclic Aromatic Hydrocarbons.

Org Lett

January 2025

Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China.

Two series of polycyclic aromatic hydrocarbon isomers ( and , and and ) were designed and synthesized by isomerically fusing phenanthrene with thiophene and thieno[3,2-]thiophene, respectively. All of the new target molecules were confirmed by single-crystal X-ray analysis, and it was found that the solid-state packing can be effectively modulated through a combination of π-extended and isomeric fused strategies. Meanwhile, compared with thiophene ring-terminated isomers and , both having a V-shaped geometry and showing no obvious self-assembly behavior, π-extended unit thieno[3,2-]thiophene-terminated isomer displays a V-shaped structure with moderate self-assembly properties and isomer exhibits a C-shaped configuration with further enhanced self-assembly properties.

View Article and Find Full Text PDF

This study focuses on developing an affordable and cost-effective colorimetric solid-state optical sensor for target-specific naked-eye detection of Pb, offering significant potential for real-time environmental monitoring and public health applications. The indigenously developed porous polymer monolithic template, poly(lauryl methacrylate-co-ethylene glycol dimethacrylate) (poly(LMC-co-EGDMA) is infused with a chromoionophoric probe, i.e.

View Article and Find Full Text PDF

Covalent adaptable networks (CANs) offer innovative solutions for the reprocessing and recycling of thermoset polymers. However, achieving a balance between easy reprocessing and creep resistance remains a challenge. This study focuses on designing and synthesizing polyurethane (PU) materials with tailored properties by manipulating the stereochemistry of diamine chain extenders.

View Article and Find Full Text PDF

This paper explores optimization strategies for polymeric materials in organic solar cells (OSCs) with the focus on varying alkyl side chain, addition of fluorine atom, and thiophenated derivatives onto polymer. As such, it outlines the significance of renewable energy sources and the potential of photovoltaic technologies, particularly organic photovoltaics (OPVs). Objectives include factors affecting power conversion efficiency (PCE), open-circuit voltage (Voc), aggregation tendencies, and optoelectronic properties in OPVs.

View Article and Find Full Text PDF

Modification of the dielectric friction layer materials is an ideal way to enhance the output performance of a triboelectric nanogenerator (TENG), but current research mostly focuses on the metal-polymer or metal-SiO materials. In this work, we constructed different TENG models based on polymer C F -SiO electret materials, and the electronic properties of the different contact surfaces were investigated using first principles. We found that the charge transfer in C F -SiO materials occurred only at the contact interface, and it was partially affected by the terminal atoms near the SiO interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!