Levels of complexity in scale-invariant neural signals.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Physics and Center for Polymer Studies, Boston University, and Division of Sleep Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.

Published: April 2009

Many physical and physiological signals exhibit complex scale-invariant features characterized by 1/f scaling and long-range power-law correlations, indicating a possibly common control mechanism. Specifically, it has been suggested that dynamical processes, influenced by inputs and feedback on multiple time scales, may be sufficient to give rise to 1/f scaling and scale invariance. Two examples of physiologic signals that are the output of hierarchical multiscale physiologic systems under neural control are the human heartbeat and human gait. Here we show that while both cardiac interbeat interval and gait interstride interval time series under healthy conditions have comparable 1/f scaling, they still may belong to different complexity classes. Our analysis of the multifractal scaling exponents of the fluctuations in these two signals demonstrates that in contrast to the multifractal behavior found in healthy heartbeat dynamics, gait time series exhibit less complex, close to monofractal behavior. Further, we find strong anticorrelations in the sign and close to random behavior for the magnitude of gait fluctuations at short and intermediate time scales, in contrast to weak anticorrelations in the sign and strong positive correlation for the magnitude of heartbeat interval fluctuations-suggesting that the neural mechanisms of cardiac and gait control exhibit different linear and nonlinear features. These findings are of interest because they underscore the limitations of traditional two-point correlation methods in fully characterizing physiological and physical dynamics. In addition, these results suggest that different mechanisms of control may be responsible for varying levels of complexity observed in physiological systems under neural regulation and in physical systems that possess similar 1/f scaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6653582PMC
http://dx.doi.org/10.1103/PhysRevE.79.041920DOI Listing

Publication Analysis

Top Keywords

1/f scaling
16
levels complexity
8
exhibit complex
8
time scales
8
systems neural
8
time series
8
anticorrelations sign
8
scaling
5
gait
5
complexity scale-invariant
4

Similar Publications

Low-frequency noise in detection systems significantly affects the performance of ultrasensitive and ultracompact spin-exchange relaxation-free atomic magnetometers. High frequency modulation detection helps effectively suppress the 1/ noise and enhance the signal-to-noise ratio, but conventional modulators are bulky and restrict the development of integrated atomic magnetometer modulation-detection systems. Resonant metasurface-based thin-film lithium-niobate (TFLN) active optics can modulate free-space light within a compact configuration.

View Article and Find Full Text PDF

The self-assembly of intrinsically disordered proteins (IDPs) into condensed phases and the formation of membrane-less organelles (MLOs) can be considered as the phenomenon of collective behavior. The conformational dynamics of IDPs are essential for their interactions and the formation of a condensed phase. From a physical perspective, collective behavior and the emergence of phase are associated with long-range correlations.

View Article and Find Full Text PDF

Patterns of phytochemistry localisation in plant tissues are diverse within and across leaves. These spatial heterogeneities are important to the fitness of herbivores, but their effects on herbivore foraging and dietary experience remain elusive. We manipulated the spatial variance and clusteredness of a plant toxin in a synthetic diet landscape on which individual caterpillars fed.

View Article and Find Full Text PDF

Traditionally categorized as a uniform sleep phase, rapid eye movement sleep exhibits substantial heterogeneity with its phasic and tonic constituents showing marked differences regarding many characteristics. Here, we investigate how tonic and phasic states differ with respect to aperiodic neural activity, a marker of arousal and sleep. Rapid eye movement sleep heterogeneity was assessed using either binary phasic-tonic (n = 97) or continuous (in 60/97 participants) approach.

View Article and Find Full Text PDF

Nanothermodynamics: There's Plenty of Room on the Inside.

Nanomaterials (Basel)

November 2024

Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA.

Nanothermodynamics provides the theoretical foundation for understanding stable distributions of statistically independent subsystems inside larger systems. In this review, it is emphasized that extending ideas from nanothermodynamics to simplistic models improves agreement with the measured properties of many materials. Examples include non-classical critical scaling near ferromagnetic transitions, thermal and dynamic behavior near liquid-glass transitions, and the 1/-like noise in metal films and qubits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!