Detection and identification (ID) of all drug metabolites following liquid chromatography (LC)/mass spectrometry (MS) analysis of complex biological matrixes are not trivial. To facilitate detection of drug-derived materials that possess highly diagnostic isotopic patterns (e.g., chlorine- and bromine-containing compounds), we report an accurate-mass-based spectral-averaging isotope-pattern-filtering (AMSA-IPF) algorithm developed in the computational language R. The AMSA-IPF algorithm offers three significant improvements over the traditional isotope filtering method often provided by instrument vendors. First, spectral averaging is performed before the IPF to reduce scan-to-scan variability of ion intensities. Second, the IPF process is strictly based on accurate mass typically obtained on high resolution mass spectrometers. The designated isotopic ion-pairs (e.g., M + 2:M or M + 1:M, where M is the molecular ion and M + 1 and M + 2 are the isotopic ions) must fall into the predefined accurate mass tolerance window (e.g., 5 ppm) and at the same time satisfy the predefined relative abundance criteria. Third, both M + 1:M and M + 2:M ion pairs are inspected in the filtering process. The inclusion of M + 1:M ion pair enhanced the specificity of this algorithm by removing background ions that form M:M + 2 ion pairs within predefined isotope ratios by coincidence. The algorithm demonstrated excellent effectiveness in detecting drug-related ions in in vivo samples (plasma, bile, urine and feces) obtained from rats orally dosed with 14C-loratadine. The ion chromatograms of the filtered LC-MS data files showed near perfect qualitative correlation with the corresponding radioprofiles. AMSA-IPF will be another great tool to facilitate detection and ID of drug metabolites in complex LC-MS data without the help of radiolabels. The AMSA-IPF algorithm is applicable to not only compounds containing distinct natural isotopes (such as Cl and Br) but also compounds that contain synthetically incorporated isotopes (13C, 15N, etc) generating a distinct isotope pattern. The ability to detect and identify metabolites from nonradiolabeled studies will be extremely beneficial to achieve compliance with FDA's most recent guidance on metabolites in safety testing (MIST).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac900626d | DOI Listing |
Backgrounds: Abuse of feed supplement can cause oxidative stress and inflammatory responses in Gallus gallus. Synbiotics are composed of prebiotics and probiotics and it possess huge application potentials in the treatment of animal diseases.
Methods: This study examined the effect of d-tagatose on the probiotic properties of L.
Trop Anim Health Prod
January 2025
College of Animal Sciences, Anhui Science and Technology University, Fengyang, 233100, China.
This study was aim to investigate the effects of lipoic acid (ALA) on performance, meat quality, serum biochemistry and antioxidant function of broilers under heat stress (HS). Two hundred1-day-old Cobb broilers were randomly divided into four treatment groups and each treatment consisted of 4 replicates of 10 broilers each. The treatment group adopts a 2 × 2 two-factor setting, which is divided into two diets (basic diet or 250 mg/kg ALA diet) and two temperatures (24 ± 1℃ or 33 ± 1℃).
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata, 700 009, India.
Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.
View Article and Find Full Text PDFPlant J
January 2025
College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China.
The traditional Chinese medicinal plant Prunella vulgaris contains numerous triterpene saponin metabolites, notably ursolic and oleanolic acid saponins, which have significant pharmacological values. Despite their importance, the genes responsible for synthesizing these triterpene saponins in P. vulgaris remain unidentified.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States.
The fungal metabolite verticillin A is a potent and selective histone methyltransferase inhibitor. It regulates apoptosis, the cell cycle, and stress response, and displays potent activity in the suppression of tumor cell growth in several different in vivo models. Verticillin A sensitizes pancreatic cancer cells to anti-PD-1 immunotherapy by regulating PD-L1 expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!