Tracing the evolution of competence in Haemophilus influenzae.

PLoS One

Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.

Published: June 2009

Natural competence is the genetically encoded ability of some bacteria to take up DNA from the environment. Although most of the incoming DNA is degraded, occasionally intact homologous fragments can recombine with the chromosome, displacing one resident strand. This potential to use DNA as a source of both nutrients and genetic novelty has important implications for the ecology and evolution of competent bacteria. However, it is not known how frequently competence changes during evolution, or whether non-competent strains can persist for long periods of time. We have previously studied competence in H. influenzae and found that both the amount of DNA taken up and the amount recombined varies extensively between different strains. In addition, several strains are unable to become competent, suggesting that competence has been lost at least once. To investigate how many times competence has increased or decreased during the divergence of these strains, we inferred the evolutionary relationships of strains using the largest datasets currently available. However, despite the use of three datasets and multiple inference methods, few nodes were resolved with high support, perhaps due to extensive mixing by recombination. Tracing the evolution of competence in those clades that were well supported identified changes in DNA uptake and/or transformation in most strains. The recency of these events suggests that competence has changed frequently during evolution but the poor support of basal relationships precludes the determination of whether non-competent strains can persist for long periods of time. In some strains, changes in transformation have occurred that cannot be due to changes in DNA uptake, suggesting that selection can act on transformation independent of DNA uptake.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2689351PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005854PLOS

Publication Analysis

Top Keywords

dna uptake
12
tracing evolution
8
competence
8
evolution competence
8
strains
8
non-competent strains
8
strains persist
8
persist long
8
long periods
8
periods time
8

Similar Publications

DNA Nanotags for Multiplexed Single-Particle Electron Microscopy and Electron Cryotomography.

JACS Au

January 2025

CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China.

DNA nanostructures present new opportunities as Nanotags for electron microscopy (EM) imaging, leveraging their high programmability, unique shapes, biomolecule conjugation capability, and stability compatible with standard cryogenic sample preparation protocols. This perspective highlights the potential of DNA Nanotags to enable high-throughput multiplexed EM analysis and facilitate particle identification for cryogenic electron tomography (cryo-ET). Meanwhile, applying Nanotags in live-cell environments requires the efficient cellular uptake of intact structures and successful cytosolic migration.

View Article and Find Full Text PDF

The self-assembled ferritin protein nanocage plays a pivotal role during oxidative stress, iron metabolism, and host-pathogen interaction by executing rapid iron uptake, oxidation and its safe-storage. Self-assembly creates a nanocompartment and various pores/channels for the uptake of charged substrates (Fe) and develops a concentration gradient across the protein shell. This phenomenon fuels rapid ferroxidase activity by an upsurge in the substrate concentration at the catalytic sites.

View Article and Find Full Text PDF

Novel radiation sensitizers, including inhibitors targeting DNA damage response, have been developed to enhance the efficacy of anticancer treatments that induce DNA damage in cancer cells. Peposertib, a potent, selective, and orally administered inhibitor of DNA-dependent protein kinase, impedes the nonhomologous end-joining mechanism for DNA double-strand break (DSB) repair. We investigated radioimmunotherapy alone or with peposertib in preclinical models of renal cell carcinoma (RCC) or prostate cancer.

View Article and Find Full Text PDF

Currently, the molecular mechanisms of azole resistance in C. glabrata are unresolved. This study aims to detect azole resistance of C.

View Article and Find Full Text PDF

Background Tuberculosis (TB) remains a major cause of global morbidity and mortality. Efforts to control TB are hampered by the lengthy and cumbersome treatment required to eradicate the infection. Bacterial persistence during exposure to bactericidal antibiotics is at least partially mediated by the bacterial stringent response enzyme, Rel .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!