Five percent of patients with unexplained mental retardation have been attributed to cryptic unbalanced subtelomeric rearrangements. Half of these affected individuals have inherited the rearrangement from a parent who is a carrier for a balanced translocation. However, the frequency of carriers for cryptic balanced translocations is unknown. To determine this frequency, 565 phenotypically normal unrelated individuals were examined for balanced subtelomeric rearrangements using Fluorescent In Situ hybridization (FISH) probes for all subtelomere regions. While no balanced subtelomeric rearrangements were identified, three females in this study were determined to be mosaic for the X chromosome. Mosaicism for XXX cell lines were observed in the lymphocyte cultures of 3 in 379 women (0.8%), which is a higher frequency than the 1 in 1000 (0.1%) reported for sex chromosome aneuploidies. Our findings suggest that numerical abnormalities of the X chromosome are more common in females than previously reported. Based on a review of the literature, the incidence of cryptic translocation carriers is estimated to be approximately 1/8,000, more than ten-fold higher than the frequency of visible reciprocal translocations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688762 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005855 | PLOS |
Nucleic Acids Res
November 2024
Department of Biological Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea.
Telomeres protect chromosome ends from DNA damage responses, and their dysfunction triggers genomic alterations like chromosome fusion and rearrangement, which can lead to cellular death. Certain cells, including specific cancer cells, adopt alternative lengthening of telomere (ALT) to counteract dysfunctional telomeres and proliferate indefinitely. While telomere instability and ALT activity are likely major sources of genomic alteration, the patterns and consequences of such changes at the nucleotide level in ALT cells remain unexplored.
View Article and Find Full Text PDFChromosoma
October 2024
Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Turkey.
Polyploidy is a common feature in eukaryotes with one of paramount consequences leading to better environmental adaptation. Heterochromatin is often located at telomeres and centromeres and contains repetitive DNA sequences. Sainfoin (Onobrychis viciifolia) is an important perennial forage legume for sustainable agriculture.
View Article and Find Full Text PDFInt J Mol Sci
July 2024
Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
Endothelial cells (ECs) maintain vessel tone and barrier integrity, regulate blood homeostasis, and prevent the extravasation of leukocytes under normal physiological conditions. Because of the limited lifespans and batch-to-batch differences with respect to the genetic make-up of primary ECs, established immortal EC lines are extensively used for studying endothelial biology. To address this issue, the immortal endothelial cell line EA.
View Article and Find Full Text PDFAm J Med Genet A
December 2024
Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, California, USA.
We report a 17-year-old male with supravalvular stenosis, initial failure to thrive and delayed early development, short stature, acromelia, dysmorphic facial features, hypertelorism, macrocephaly, syringomyelia, hypertension, and anxiety disorder. Fluorescent in situ hybridization (FISH), chromosomal microarray analysis (CMA), and exome sequencing (ES) were nondiagnostic. Combined optical genome mapping (OGM) and genome sequencing (GS) showed a complex rearrangement including an X chromosome with a 22.
View Article and Find Full Text PDFSilver-Russell syndrome (SRS) is a well-known syndrome but with heterogeneous etiologies. We present the case of a child with severe SRS-like features resulting from a complex rearrangement of chromosome 11 inherited from his mother. We studied the index case with karyotyping, MS-MLPA and molecular karyotyping.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!