We present a monolithic integrated Raman silicon laser based on silicon-on-insulator (SOI) rib waveguide race-track ring resonator with an integrated p-i-n diode structure. Under reverse biasing, we achieved stable, single mode, continuous-wave (CW) lasing with output power exceeding 30mW and 10% slope efficiency. The laser emission has high spectral purity with a measured side mode suppression exceeding 70dB and laser linewidth of <100 kHz. This laser architecture allows for on-chip integration with other silicon photonics components to provide a highly integrated and scaleable monolithic device.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.14.006705DOI Listing

Publication Analysis

Top Keywords

monolithic integrated
8
integrated raman
8
raman silicon
8
silicon laser
8
laser
4
laser monolithic
4
laser based
4
based silicon-on-insulator
4
silicon-on-insulator soi
4
soi rib
4

Similar Publications

Silicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute and sense the world. However, the lack of highly scalable, native complementary metal-oxide-semiconductor (CMOS)-integrated light sources is one of the main factors hampering its widespread adoption. Despite considerable progress in hybrid and heterogeneous integration of III-V light sources on silicon, monolithic integration by direct epitaxy of III-V materials remains the pinnacle of cost-effective on-chip light sources.

View Article and Find Full Text PDF

Four-dimensional printing (4DP) technologies can expand the functionality of stimuli-responsive devices to enable the integration of multiple stimuli-responsive parts into a compact device. Herein, we used digital light processing three-dimensional printing technique, flexible photocurable resins, and photocurable resins of the temperature-responsive hydrogels comprising -isopropylacrylamide (NIPAM), ,'-methylenebis(acrylamide) (MBA), and graphene for 4DP of a lab-on-valve (LOV) solid-phase extraction (SPE) device. This device featured flow manifolds and a monolithic packing connected by four near-infrared (NIR)-actuated temperature-responsive switching valves composed of a poly(NIPAM/MBA) (PNM) ball pushing a flexible membrane.

View Article and Find Full Text PDF

In order to enrich the selection of biological ligands, realize the miniaturization analysis, and broaden the application of monolith materials for active ingredients screening and separating, we sough to construct a lipid raft @capillary monolith microcolumn affinity chromatography model. Single factor experiments and various characterization methods, including scanning electron microscopy (SEM) and thermogravimetric analysis, were employed to investigate the polymerization of the monolith column under different material ratios to determine optimal preparation conditions. Subsequently, the lipid raft from U251 cells was integrated with the monolith materials based on epoxy-based covalent crosslinking principle and characterized through SEM and immunofluorescence methods.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to assess the biomechanical performance of different designs of three-unit implant-supported prostheses using two materials (Zirconia and PEKK) under various loading conditions.
  • Three models were created with different implant placements to analyze three designs: distal cantilever, fixed-fixed, and mesial cantilever, utilizing finite element analysis for stress evaluation.
  • Results indicated that the fixed-fixed design performed best, with PEKK showing lower stress in some areas but higher stress in others compared to Zirconia, highlighting the importance of design and material choice in prosthodontics.
View Article and Find Full Text PDF

Multiple functional tailored materials have shown great potential for both pollutant degradation and freshwater recovery. In this study, we synthesized densely distributed Co onto carbon-layer-coated Ni/AlO hydrangea composites (Ni/AlO@Co) the polymerization of dopamine under a controlled graphitized process. The characterization results revealed that Ni/AlO@Co, with abundant exposed bimetallic Co-Ni species on the surface of AlO, could afford accessible catalytic sites for persulphate activation and subsequent pollutant degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!