We present a summary of the simulation exercise carried out within the EC Cost Action P11 on the rigorous modeling of photonic crystal fiber (PCF) with an elliptically deformed core and noncircular air holes with a high fill factor. The aim of the exercise is to calculate using different numerical methods and to compare several fiber characteristics, such as the spectral dependence of the phase and the group effective indices, the birefringence, the group velocity dispersion and the confinement losses. The simulations are performed using four rigorous approaches: the finite element method (FEM), the source model technique (SMT), the plane wave method (PWM), and the localized function method (LFM). Furthermore, we consider a simplified equivalent fiber method (EFM), in which the real structure of the holey fiber is replaced by an equivalent step index waveguide composed of an elliptical glass core surrounded by air cladding. All these methods are shown to converge well and to provide highly consistent estimations of the PCF characteristics. Qualitative arguments based on the general properties of the wave equation are applied to explain the physical mechanisms one can utilize to tailor the propagation characteristics of nonlinear PCFs.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.14.005699DOI Listing

Publication Analysis

Top Keywords

rigorous modeling
8
modeling photonic
8
photonic crystal
8
comparison methods
4
methods rigorous
4
crystal fibers
4
fibers summary
4
summary simulation
4
simulation exercise
4
exercise carried
4

Similar Publications

Comparative glycomics data are compositional data, where measured glycans are parts of a whole, indicated by relative abundances. Applying traditional statistical analyses to these data often results in misleading conclusions, such as spurious "decreases" of glycans when other structures increase in abundance, or high false-positive rates for differential abundance. Our work introduces a compositional data analysis framework, tailored to comparative glycomics, to account for these data dependencies.

View Article and Find Full Text PDF

Bacterial artificial chromosome transgenic models, including most Cre-recombinases, enable potent interrogation of gene function in vivo but require rigorous validation as limitations emerge. Due to its high relevance to metabolic studies, we perform comprehensive analysis of the Ucp1-Cre line which is widely used for brown fat research. Hemizygotes exhibit major brown and white fat transcriptomic dysregulation, indicating potential altered tissue function.

View Article and Find Full Text PDF

Use of drug-killed cancer cells: A method to assess the therapeutic effectiveness of immunogenic cell death.

Methods Cell Biol

January 2025

Laboratorio de Inmunologia y Virologia, Facultad de Ciencias Biologicas, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Nuevo León, Mexico. Electronic address:

Cancer immunotherapy has revolutionized cancer treatment by harnessing the immune system's potential to combat cancer. Among the various strategies in this field, the use of killed tumor cells (KC) induced by immunogenic cell death (ICD) inducers has gained attraction. This approach involves the treatment of cancer cells in vitro, followed by the subcutaneous injection of these killed cells into tumor-bearing mice.

View Article and Find Full Text PDF

Purpose: Despite rigorous evidence of improved quality of life and longer survival, disparities in the utilization of palliative and hospice care persist for racial and ethnic minority patients with cancer. This study evaluated the impact of psychosocial factors on utilization of these services.

Methods: Patients with advanced lung cancer were recruited at a large academic urban hospital.

View Article and Find Full Text PDF

A novel multi-molecular beam/infrared reflection absorption spectroscopy (IRAS) apparatus is described, which was constructed for studying mechanisms and kinetics of heterogeneously catalyzed reactions following a rigorous surface science approach in the pressure range from ultrahigh vacuum (UHV, 1 × 10-10 mbar) to near-ambient pressure (NAP, 1000 mbar) conditions. The apparatus comprises a preparation chamber equipped with standard surface science tools required for the preparation and characterization of model heterogeneous catalysts and two reaction chambers operating at different pressure ranges: in UHV and in the variable pressure range up to NAP conditions. The UHV reaction chamber contains two effusive molecular beams (flux up to 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!