Ground based high-contrast imaging (e.g. extrasolar giant planet detection) has demanding wavefront control requirements two orders of magnitude more precise than standard adaptive optics systems. We demonstrate that these requirements can be achieved with a 1024-Micro-Electrical-Mechanical-Systems (MEMS) deformable mirror having an actuator spacing of 340 microm and a stroke of approximately 1 microm, over an active aperture 27 actuators across. We have flattened the mirror to a residual wavefront error of 0.54 nm rms within the range of controllable spatial frequencies. Individual contributors to final wavefront quality, such as voltage response and uniformity, have been identified and characterized.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.14.005558DOI Listing

Publication Analysis

Top Keywords

demonstrating sub-nm
4
sub-nm closed
4
closed loop
4
loop mems
4
mems flattening
4
flattening ground
4
ground based
4
based high-contrast
4
high-contrast imaging
4
imaging extrasolar
4

Similar Publications

Homogeneous Integration of Polyoxometalates and Titania into Crumpled Layers.

Small Methods

October 2024

Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China.

The crumpling and buckling in nanosheets are anticipated to provide new characteristics that could not be observed in ideal flat layers. However, the rigid lattice structure of inorganic metal oxides limits their assembly into well-defined crumpled layers. Here, this study demonstrates that at the sub-nm scale, polyoxometalates (POMs) clusters having well-defined structures can intercede during the nucleation process of titania and co-assemble with nuclei to form uniform, large-sized crumpled binary 2D layers with a thickness of 2 nm.

View Article and Find Full Text PDF
Article Synopsis
  • Silicon-based color-centers (SiCCs) are being developed as promising quantum-light sources for integration with telecom-range Silicon Photonics platforms.
  • Traditional methods for creating SiCCs face challenges in precisely controlling emitter positions due to random ion-implantation processes.
  • A new method using low-temperature epitaxial growth allows for precise positioning of SiCCs, enabling the formation of various types, including a newly identified G'-center, which shows potential for single-photon sources and improved optical properties.
View Article and Find Full Text PDF
Article Synopsis
  • Diamond's unique properties make it ideal for quantum and electronic tech, but its growth on other materials is limited, affecting technology integration.
  • The researchers developed a method to directly bond single-crystal diamond membranes to various materials, achieving minimal contamination and consistent quality.
  • Their ultra-thin diamond membranes show potential for high-performance quantum applications and compatibility with advanced microscopy techniques, paving the way for new hybrid systems in technology.
View Article and Find Full Text PDF

Ion selective membranes are fundamental components of biological, energy, and computing systems. The fabrication of solid-state ultrathin membranes that can separate ions of similar size and the same charge with both high selectivity and permeance remains a challenge, however. Here, we present a method, utilizing the application of a remote electric field, to fabricate a high-density of (sub)nm pores in situ.

View Article and Find Full Text PDF

Multivalent lectin-glycan interactions (MLGIs) are widespread and vital for biology, making them attractive therapeutic targets. Unfortunately, the structural and biophysical mechanisms of several key MLGIs remain poorly understood, limiting our ability to design spatially matched glycoconjugates as potential therapeutics against specific MLGIs. We have recently demonstrated that natural oligomannose-coated nanoparticles are powerful probes for MLGIs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!