Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The periodic scattering of the surface plasmon modes employed in the waveguide of terahertz quantum cascade lasers is shown to be an efficient method to control the properties of the laser emission. The scatterers are realized as thin slits in the metal and top contact layer carrying the surface plasmon. This technique provides larger coupling strengths than previously reported and can be used in various device implementations. Here the method is applied to realize a distributed feedback resonator without back-facet reflection, to achieve vertical emission of the radiation with second-order gratings, and to increase the facet reflectivity by fabricating passive distributed Bragg reflectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.14.005335 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!