We propose and demonstrate a novel Sagnac interferometer based flat-top birefringent optical interleaver employing a ring-cavity as a phase-shift element. The Sagnac interferometer with birefringent crystals provides the optical path difference for interference between the two orthogonal polarization components and the ring-cavity provides the phase shifts needed to achieve a flat-top spectral passband at the output. Fresnel reflections at the prism-air interface of the ring cavity are employed to obtain the desired phase shifts so that highly accurate thin-film coatings are not needed. The Sagnac interferometer based interleaver in a 25-GHz channel spacing (0.2 nm) application exhibits a 0.5-dB passband larger than 0.145 nm, a 25-dB stop band greater than 0.145 nm, and a channel isolation higher than 36 dB over the entire C-band. The superior performance is accompanied with a group velocity dispersion and ripples that can be compensated by using dispersion compensators. (c)2006 Optical Society of America.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.14.004636DOI Listing

Publication Analysis

Top Keywords

sagnac interferometer
16
interferometer based
12
based flat-top
8
flat-top birefringent
8
phase shifts
8
sagnac
4
birefringent interleaver
4
interleaver propose
4
propose demonstrate
4
demonstrate novel
4

Similar Publications

Ultra-High Sensitivity Methane Gas Sensor Based on Cryptophane-A Thin Film Depositing in Double D-Shaped Photonic Crystal Fiber Using the Vernier Effect.

Sensors (Basel)

December 2024

State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.

Methane gas leakage can lead to pollution problems, such as rising ambient temperature. In this paper, the Vernier effect of a double D-shaped photonic crystal fiber (PCF) in a Sagnac interferometer (SI) is proposed for the accurate detection of mixed methane gas content in the gas. The optical fiber structure of the effective sensing in the sensing SI loop and the effective sensing in the reference SI loop are the same.

View Article and Find Full Text PDF

Measurement with indefinite causal order and the Sagnac interferometer.

Philos Trans A Math Phys Eng Sci

December 2024

School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK.

It has been shown that measurements involving indefinite causal order can be superior to those in which a sequence of operations occurs in a specified order. In optics, such measurements are realized naturally in a Sagnac interferometer. We show that such an arrangement can measure the solid angle (on the Poincaré sphere) enclosed by a sequence of unitary transformations of the polarization.

View Article and Find Full Text PDF

Laser-deflection-based acoustic sensing is known for high bandwidth but low sensitivity. By embedding the sensing laser within a Sagnac interferometer and incorporating split-beam detection-originally developed for optical trapping microscopy-we demonstrate sensitive acoustic detection in air with a 2 MHz bandwidth. In a direct comparison, our method far-exceeds performance metrics of a state-of-the-art, commercially-available, high-bandwidth microphone.

View Article and Find Full Text PDF
Article Synopsis
  • High-speed quantum key distribution (QKD) systems are using gain-switched semiconductor lasers (GSSL) and Sagnac interferometers due to their efficiency and cost-effectiveness.
  • However, the finite extinction ratio of GSSL can lead to a time-dependent side-channel that can compromise security by leaking information between the output polarization states of light pulses.
  • The study explores this vulnerability, tests various countermeasures, and presents a mathematical framework to evaluate their effects on secure key rates, ultimately offering practical recommendations for enhancing QKD security.
View Article and Find Full Text PDF

The recent advances in micromanufacturing have been pushing boundaries of the new generation of semiconductor devices, which, in the meantime, brings new challenges in the material and structural characterization - a key step to ensure the device quality through the micromanufacturing process. An ultrafast laser-enable optoacoustic characterization methodology is developed, targeting in situ calibration and delineation of the three-dimensional (3-D), nanoscopic interior features of opaque semiconductor chips. With the guidance of ultrafast electron-phonon coupling effect and velocity-perturbated optical interference, a femtosecond-laser pump-probe set-up based on Sagnac interferometer is configured to generate and acquire picosecond ultrasonic bulk waves (P-UBWs) traversing the microchips.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!