When a fiber Fabry-Perot is used in an ultra-sensitive strain detection system via a radio-frequency interrogation scheme, its frequency discrimination properties can be enhanced by reducing the linewidth of its resonance. This increases the signal-to-noise ratio, and thus suppresses the strain equivalent noise floor. We demonstrate this improvement in a long-distance high performance remote sensing system and show that in reflection, it can mitigate the effects of random phase noise introduced by Rayleigh back-scattering. In transmission, it improves the remote system sensitivity to sub-picostrain resolution, which surpasses any other long-distance remote sensing system to date. With the reduced fiber Fabry-Perot linewidth, all noise sources in the delivery fiber become irrelevant, as the transmission system is limited only by the pre-stabilized laser frequency noise.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.14.004617DOI Listing

Publication Analysis

Top Keywords

fiber fabry-perot
8
remote sensing
8
sensing system
8
system
5
laser frequency-noise-limited
4
frequency-noise-limited ultrahigh
4
ultrahigh resolution
4
remote
4
resolution remote
4
fiber
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!