Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Optical-field enhancement and confinement for an asymmetrically illuminated nanoscopic Au tip suspended over a planar Au substrate is investigated both numerically and experimentally. The spatial field distribution of the tip-sample system was calculated using the full 3D finite-difference time-domain method. The calculation enables investigation of the effects of the substrate-tip placement, angle of incidence, and spectral response. The tip plasmon response leads to a significant (up to ~70 times) local field enhancement between the tip and substrate. The enhancement is found to be extremely sensitive to the tip-sample separation distance. Tip-enhanced Raman scattering experiments were performed and the numerical results provide a consistent description of the observed field localization and enhancement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.14.002921 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!