A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Resting metabolic rate after endurance exercise training. | LitMetric

Resting metabolic rate after endurance exercise training.

Med Sci Sports Exerc

Graduate School of Physical Education, Kyung Hee University, Suwon, Korea.

Published: July 2009

Purpose: 1) To examine the effect of a 12-wk endurance exercise training program on RMR and 2) to provide insight into the mechanisms responsible for alterations in RMR that may occur after exercise training.

Methods: Male participants (19-32 yr) in an exercise group (EX; n = 9) performed jogging and/or running 3-4 d x wk(-1), 25-40 min per session, at 60%-80% VO2max, whereas subjects in a control group (CON; n = 10) maintained their normal activity patterns. Body composition, VO2max, RMR, epinephrine, norepinephrine, total thyroxine, free thyroxine, insulin, free fatty acids, and glucose were measured before and after the intervention.

Results: Training resulted in a significant increase in VO2max in EX (46.2 +/- 1.2 to 51.0 +/- 1.3 mL x kg(-1) x min(-1), P < 0.001). Absolute and relative values for RMR did not significantly change in EX after training. Mean values for epinephrine, norepinephrine, total thyroxine, insulin, and glucose did not significantly change in either group; however, free thyroxine decreased significantly after training in EX (P = 0.04). Training also resulted in a significant increase in free fatty acid concentration in EX (0.37 +/- 0.03 to 0.48 +/- 0.04 mmol x L(-1), P < 0.001). RMR in CON decreased significantly when expressed as an absolute value (P < 0.01) and relative to body weight (P < 0.01), fat-free mass (P < 0.01), and fat mass (P = 0.04).

Conclusions: The mechanism for the decrease in CON is unknown, but it may be related to seasonal variations in RMR. Training may have prevented a similar decline in RMR in EX and may be related to a training-induced increase in fat oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1249/MSS.0b013e31819bd617DOI Listing

Publication Analysis

Top Keywords

endurance exercise
8
exercise training
8
epinephrine norepinephrine
8
norepinephrine total
8
total thyroxine
8
free thyroxine
8
thyroxine insulin
8
free fatty
8
training increase
8
training
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!