Unlabelled: Central and peripheral mechanisms contribute to fatigue during exercise. Electrical and transcranial magnetic stimulation have been used to assess these fatigue mechanisms. Peripheral magnetic stimulation (PMS) of the femoral nerve is associated with very little subject discomfort and has been shown to elicit quadriceps contractions of >70% maximal voluntary contraction (MVC).
Purpose: To examine peripheral versus central mechanisms of fatigue in men during prolonged cycling using a peripheral nerve magnetic stimulation-based technique.
Methods: Eleven men (aged 41 +/- 3 yr) cycled for 2 h at approximately 66% of VO2peak (55 +/- 2 mL x kg(-1) x min(-1)) with five 1-min sprints interspersed, followed by a 3-km time trial. Oxygen consumption was measured every 20 min to verify a constant workload. RPE were measured simultaneously and during each sprint using a Borg scale. Quadriceps isometric strength testing was performed in a seated position before and after cycling: 1) MVC, 2) MVC with superimposed magnetic stimulation to measure central activation ratio (CAR), 3) femoral nerve stimulation alone. One-minute recoveries were allowed between contractions. Changes in metabolic measurements over time were analyzed with repeated-measures ANOVA, and strength changes before to after with Student's paired t-tests.
Results: HR (P = 0.03) and RPE (P < 0.001) increased over time during the 2 h, and MVC declined by 22% (P = 0.001) indicating fatigue. Force elicited by PMS alone decreased 17% (P < 0.001). CAR decreased from 83% before exercise to 71% (P = 0.005) after exercise indicating a loss of central drive. PMS-induced force was > or =90% of MVC.
Conclusions: Results clearly demonstrate that trained cyclists experience significant central fatigue during prolonged cycling. PMS may be a better technique for identifying central fatigue than the traditionally used interpolated twitch technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1249/MSS.0b013e318199eb75 | DOI Listing |
JAMA Neurol
January 2025
Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore.
Importance: Biomarkers would greatly assist decision-making in the diagnosis, prevention, and treatment of chronic pain.
Objective: To undertake analytical validation of a sensorimotor cortical biomarker signature for pain consisting of 2 measures: sensorimotor peak alpha frequency (PAF) and corticomotor excitability (CME).
Design, Setting, And Participants: This cohort study at a single center (Neuroscience Research Australia) recruited participants from November 2020 to October 2022 through notices placed online and at universities across Australia.
Cerebrospinal fluid (CSF) dynamics, driven by sensory stimulation-induced neuronal activity, is crucial for maintaining homeostasis and clearing metabolic waste. However, it remains unclear whether such CSF flow is impaired in age-related neurodegenerative diseases of the visual system. This study addresses this gap by examining CSF flow during visual stimulation in glaucoma patients and healthy older adults using functional magnetic resonance imaging.
View Article and Find Full Text PDFEClinicalMedicine
February 2025
Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK.
Background: Supratentorial function-eloquent brain tumour surgeries challenge the balance between maximal tumour resection and preservation of neurological function. This study aims to evaluate the efficacy of preoperative and intraoperative mapping techniques on resection outcomes and post-operative deficits.
Methods: This systematic review and meta-analysis examined literature up to March 2023, sourced from PubMed, Embase, and Medline.
J Pain Res
January 2025
School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada.
Purpose: Complex regional pain syndrome (CRPS) is a debilitating chronic pain condition characterized by sensory, motor, and autonomic dysfunction with a world-wide prevalence of 26.2 per 100,000 people per year and is 3 to 4 times more prevalent in females. Repetitive transcranial magnetic stimulation (rTMS) has shown to be beneficial for pain relief in neuropathic pain and initial evidence in CRPS is promising, but studies are limited.
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Evidence-Based Medicine and Social Medicine, School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
Introduction: Sleep deprivation (SD) significantly disrupts the homeostasis of the cardiac-brain axis, yet the neuromodulation effects of deep magnetic stimulation (DMS), a non-invasive and safe method, remain poorly understood.
Methods: Sixty healthy adult males were recruited for a 36-h SD study, they were assigned to the DMS group or the control group according to their individual willing. All individuals underwent heart sound measurements and functional magnetic resonance imaging scans at the experiment's onset and terminal points.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!