Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neural progenitor cells in the ventricular zone of the developing mammalian cerebral cortex give rise to specialized cortical cell types via consecutive rounds of proliferation and differentiation, but the mechanisms by which progenitor cell self-renewal and differentiation are regulated during cortical development are not well understood. Here, we show that zinc-finger and homeodomain protein 2 (ZHX2) is specifically expressed in neural progenitor cells during cortical neurogenesis. ZHX2 binds to the cytoplasmic domain of ephrin-B1, which is expressed in cortical neural progenitors and plays a role in neural progenitor cell maintenance. ZHX2 acts as a transcriptional repressor in cell, and its repressor activity is enhanced by coexpression of an ephrin-B1 intracellular domain. Blocking ZHX2 function in cultured neural progenitor cells or in the embryonic cortex causes neuronal differentiation, whereas overexpression of ZHX2 and an ephrin-B1 intracellular domain disrupts the normal differentiation of cortical neural progenitor cells. This study identifies ZHX2 as a novel regulator of neural progenitor cell maintenance and suggests a potential nuclear mechanism of the ephrin-B function in the cortex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759685 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.5841-08.2009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!