Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Glutathione plays various protective roles in the human body. Vitamin B-6 as pyridoxal-5'-phosphate (PLP) is required as the coenzyme in the formation of glutathione precursors. Despite this obligatory role of PLP, previous studies from this laboratory showed that vitamin B-6 deficiency caused elevated glutathione concentrations in rat liver and human plasma.
Objective: Our aim was to determine the effect of marginal vitamin B-6 deficiency (plasma PLP 20-30 nmol/L) on the rate of red blood cell (RBC) glutathione synthesis.
Design: We measured plasma and RBC glutathione concentrations and the fractional and absolute synthesis rates of RBC glutathione using the stable-isotope-labeled glutathione precursor [1,2-(13)C(2)]glycine in 13 healthy volunteers aged 21-39 y.
Results: Dietary vitamin B-6 restriction did not significantly affect the glutathione concentration in plasma (6.9 +/- 1.9 compared with 6.7 +/- 1.1 micromol/L) or RBCs (2068 +/- 50 compared with 2117 +/- 48 micromol/L). For RBC glutathione, the mean fractional synthesis rates were 54 +/- 5%/d and 43 +/- 4%/d (P = 0.10), and the absolute synthesis rates were 1116 +/- 100 and 916 +/- 92 micromol . L(-1) . d(-1) (P = 0.14) before and after vitamin B-6 restriction, respectively.
Conclusions: Marginal vitamin B-6 deficiency tended to decrease mean RBC glutathione synthesis with no effect on RBC glutathione concentration, but the responses varied widely among individuals. Because the cysteine concentration in plasma and RBC did not change during vitamin B-6 restriction, we conclude that the effects of marginal vitamin B-6 deficiency on glutathione synthesis are not caused by altered precursor concentrations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709310 | PMC |
http://dx.doi.org/10.3945/ajcn.2009.27747 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!