Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rationale And Objectives: To evaluate the effect that variations in the enhancement threshold have on the diagnostic accuracy of two computer-aided detection (CAD) systems for magnetic resonance based breast cancer screening.
Materials And Methods: Informed consent was obtained from all patients participating in cancer screening and this study was approved by the participating institution's review board. This retrospective study was nested in a prospective, single-institution, high-risk, breast screening study involving dynamic contrast-enhanced magnetic resonance imaging. Only those screening examinations (n = 223) for which a histopathological diagnosis was available were included. Two CAD methods were performed: the signal enhancement ratio (SER) and support vector machines (SVMs). Statistical analysis was performed by tracking changes in each CAD test's diagnostic accuracy (eg, receiver-operating characteristic [ROC] curve area, maximum possible sensitivity) with changes in the enhancement threshold.
Results: The enhancement threshold plays a significant role in affecting a CAD test's potential sensitivity, ROC curve area, and number of assumed true and false-positive predictions per cancerous examination. A high threshold can also limit the CAD-based detection of the full size of a lesion.
Conclusions: Enhancement thresholds can limit a CAD test's ability to diagnose a lesion's full size and as such should not be raised above 60%. The clinically used SER method exhibits a high rate of false positives at low enhancement thresholds and as such the threshold should not be set lower than 50%. The SVM method yielded better results in our study than the SER method at clinically realistic enhancement thresholds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967522 | PMC |
http://dx.doi.org/10.1016/j.acra.2009.03.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!