Chitosan binds to negatively charged soy lecithin liposomes by an electrostatic interaction driven by its cationic amino group. This interaction allows developing stable coated vesicles suitable as a targeted carrier and controlled release system for drugs and vaccines. In this work, we studied the effect of chitosan-coated liposomes on the uptake and antigen presentation of hen egg-white lysozyme (HEL) in Peyer's patches peritoneal macrophages isolated from mice. Chitosan-coated liposomes were characterized according to size, zeta potential, and antigen-loading and release properties. Results showed an increase in the positive net charge and size of the liposomes as the concentration of chitosan was increased, suggesting an electrostatic interaction and an effective coating, followed by fluorescence microscopy. About 85% of the antigen loaded remained in the chitosan-coated liposomes after release studies for 4 hours in phosphate-buffered saline. After 4 hours of preincubation with a T-cell hybridoma line cocultured with murine peritoneal macrophages, only trace amounts of interleukin-2 (IL-2) were detected in the cocultures treated with HEL alone, whereas cocultures treated with HEL-liposomes had an important production of IL-2, and the HEL chitosan-coated liposomes had already reached maximum IL-2 expression. Confocal microscopy studies showed that chitosan-coated liposomes had a higher uptake rate of the fluorescently labeled HEL than uncoated liposomal vesicles after 30 minutes of incubation with the peritoneal macrophages. Since uptake by macrophage cells is the first step in vaccination, our results suggest that the chitosan-coated liposomal system is a potential candidate as an immunoadjuvant for vaccine delivery systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/08982100903015009 | DOI Listing |
BMC Biotechnol
December 2024
Department of Microbiology, Faculty of Veterinary and Agriculture, Islamic Azad University, Shabestar Branch, Shabestar, Iran.
Introduction: Breast cancer, a formidable global health challenge for women, necessitates innovative therapeutic strategies with enhanced efficacy and minimal side effects. Aripiprazole (ARI), a widely used schizophrenia medication, exhibits promising potential in the treatment of breast cancer. As cancer therapy evolves towards a combination approach, multimodal nano-based delivery systems, such as ARI-loaded niosomes (NIOs) combined with Chitosan-Au nanoparticles for chemo-photothermal therapy, show promise over traditional chemotherapy alone by enhancing targeted efficacy and minimizing side effects.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China. Electronic address:
Epsilon-poly-lysine (EPL) is widely used in food preservatives. However, EPL can react with components in food substrates, resulting in the formation of precipitates that reduce its antimicrobial properties. Nanoencapsulation is a promising technique and represents a novel approach to enhance EPL activity.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China; Pu'er University, Pu'er 665000, China. Electronic address:
This study aimed to improve the stability of moringin and clarify the inhibitory mechanisms of moringin-loaded chitosan-coated liposomes (MR-CS-LPs) against Staphylococcus aureus. Optimisation of MR-CS-LPs was conducted using the response surface methodology, and extensive characterization was performed. The anti-bacterial activity of MR-CS-LPs was assessed by determining the minimum inhibitory concentration (MIC) and conducting growth curve analyses.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India; NanoBioSome Research Laboratory, Pardi, Bhandara Road, Nagpur, Maharashtra 440035, India. Electronic address:
The objective of this research was to optimize the composition and performance of chitosan-coated solid lipid nanoparticles carrying insulin (Ch-In-SLNs) and to assess the potential of piperine in enhancing the intestinal permeability of insulin from these SLNs in vitro. The SLNs were formulated from glyceryl behenate (GB), soya lecithin, and poloxamer® 407, and then coated with a combination of chitosan and piperine to facilitate insulin penetration across the gastrointestinal (GI) mucosa. A Box-Behnken Design (BBD) was utilized to optimize the Ch-In-SLNs formulations, with PDI, particle size, zeta potential, and association efficiency (AE) serving as the response variables.
View Article and Find Full Text PDFPharmaceutics
August 2024
Pluridisciplinar Institute, Complutense University of Madrid, Paseo Juan XXIII, 1, E-28040 Madrid, Spain.
Cancer and bacterial infections rank among the most significant global health threats. accounting for roughly 25 million fatalities each year. This statistic underscores the urgent necessity for developing novel drugs, enhancing current treatments, and implementing systems that boost their bioavailability to achieve superior therapeutic outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!