Background: The presence of vascular invasion in hepatocellular cancer (HCC) correlates with prognosis, and is a critical determinant of both the therapeutic approach and the recurrence or intrahepatic metastases. The authors sought to identify candidate therapeutic agents capable of targeting the invasive phenotype in HCC.
Methods: A gene expression signature associated with vascular invasion derived from 81 human cases of HCC was used to screen a database of 453 genomic profiles associated with 164 bioactive molecules using the connectivity map. Candidate agents were identified by their inverse correlation to the query gene signature. The efficacy of the candidate agents to target invasion was experimentally verified in PLC/PRF-5 and HepG2 HCC cells.
Results: The gene signature associated with vascular invasion in HCC comprised of 47 up-regulated and 26 down-regulated genes. Computational bioinformatics analysis revealed several putative candidates, including resveratrol and 17-allylamino-geldanamycin (17-AAG). Both of these agents reduced HCC cell invasion at noncytotoxic concentrations. 17-AAG, a heat shock protein 90 (HSP-90) inhibitor, was shown to modulate the expression of several diverse cancer-associated genes, including ADAMTS1, part of the query signature, and maspin, an HSP-90-associated protein with a tumor suppressor role in HCC.
Conclusions: Candidates for further evaluation as therapies to limit invasion in HCC have been identified using a computational bioinformatics analysis of phenotype-associated gene expression. Phenotype targeting using genomic profiling is a rational approach for drug discovery. Therapeutic strategies targeting a defined cancer-associated phenotype can be identified without a detailed knowledge of individual downstream targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cncr.24417 | DOI Listing |
Sci Rep
December 2024
Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA.
Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
The DNA cross-link repair 1B (DCLRE1B) gene is involved in repairing cross-links between DNA strands, including those associated with Hoyeraal-Hreidarsson syndrome and congenital dyskeratosis. However, its role in tumours is not well understood. DCLRE1B expression profiles were examined in tumour tissues and normal tissues using TCGA, GTEx, and TARGET datasets.
View Article and Find Full Text PDFSci Rep
December 2024
Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, P. R. China.
Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.
View Article and Find Full Text PDFSci Rep
December 2024
School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
Cuproptosis, a newly identified form of cell death, has drawn increasing attention for its association with various cancers, though its specific role in colorectal cancer (CRC) remains unclear. In this study, transcriptomic and clinical data from CRC patients available in the TCGA database were analyzed to investigate the impact of cuproptosis. Differentially expressed genes linked to cuproptosis were identified using Weighted Gene Co-Expression Network Analysis (WGCNA).
View Article and Find Full Text PDFNat Commun
December 2024
Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA.
Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!